

Declaration of conformity for products with Model EPDs

The manufacturer association Deutsche Bauchemie, of which Sika Deutschland GmbH is a member, has developed so-called Model Environmental Product Declarations (Model EPDs) and had them independently verified by the Institute Construction and Environment (IBU). These IBU verified Model EPDs have been made publicly available by the Deutsche Bauchemie and the Institute Construction and Environment. Based on the product formulations it was checked if our products were covered by the Model EPDs.

This Declaration confirms that the product

Sikafloor®-445

is covered by the attached Model EPD "Reactive resins based on polyurethane, containing solvent, solvent content between 10% and 50%" (Declaration number EPD-DBC-20130017-IBG1-E). This means that the Life Cycle Assessment (LCA) data and the remaining content of the attached Model EPD apply to the above mentioned product and may thus be used for the evaluation of the sustainability of buildings where the product is applied.

Sika Services AG

Mark Schneider

Head Global Product Sustainability

Luc Leforestier

Head Market Field Flooring

Zurich, July 2014

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025 and EN 15804

Declaration holder Deutsche Bauchemie e.V.

Industrieverband Klebstoffe e.V.

Verband der deutschen Lack- und Druckfarbenindustrie e.V.

Publisher Institute Construction and Environment e.V. (IBU)

Programme holder Institute Construction and Environment e.V. (IBU)

Declaration number EPD-DBC-20130017-IBG1-EN

Issue date 15.05.2013 Valid until: 14.05.2018

Reactive resins based on polyurethane, containing solvent, solvent content between 10% and 50% Deutsche Bauchemie e.V. (DBC) Industrieverband Klebstoffe e.V. (IVK) Verband der deutschen Lack- und Druckfarbenindustrie e.V. (VdL)

DEUTSCHE
BAUCHEMIE

Industrieverband

www.bau-umwelt.com / https://epd-online.com

1. General information

Deutsche Bauchemie e.V. Industrieverband Klebstoffe e.V. Verband der deutschen Lack- und Druckfarbenindustrie e.V.

Programme holder

IBU - Institut Bauen und Umwelt e.V. Rheinufer 108 D-53639 Königswinter

Declaration number

EPD-DBC-20130017-IBG1-E

This Declaration is based on the Product Category Rules:

Reactive resin products, 10-2012 (PCR tested and approved by the independent Expert Committee (SVA))

berennages

Issue date

15.05.2013

Valid until:

14.05.2018

Prof. Dr.-Ing. Horst J. Bossenmayer (President of Institut Bauen und Umwelt e.V.)

Prof. Dr.-Ing. Hans-Wolf Reinhardt (Chairman of the Expert Committee (SVA))

Reactive resins based on polyurethane, containing solvent, solvent content between 10% and 50%

Owner of the Declaration

Deutsche Bauchemie e.V. Mainzer Landstrasse 55 60329 Frankfurt

Industrieverband Klebstoffe e.V. Völklinger Strasse 4 40219 Düsseldorf

Verband der deutschen Lack- und Druckfarbenindustrie e.V. Mainzer Landstrasse 55 60329 Frankfurt

Declared product/unit

Reactive resins based on polyurethane, containing solvent, solvent content between 10% and 50%; density: 1 - 1.25 g/cm³

Area of applicability:

This validated Declaration entitles the holder to bear the symbol of the Institut Bauen und Umwelt e.V. It exclusively applies for the product groups referred to for plants in Germany and for a period of five years from the date of issue. It involves an association EPD where the product displaying the highest environmental impact in a group was selected for calculating the Life Cycle Assessment. The members of the associations are shown on the association Web sites. The holder of the Declaration is liable for the information and evidence on which it is based; IBU has no liability with regard to manufacturer's information, LCA data and evidence.

Verification

The CEN EN 15804 standard serves as the core PCR. Verification of the EPD by an independent third party in accordance with ISO 14025

internally

x externally

Yeard

Dr.-Ing. Ivo Mersiowsky
Independent auditor appointed by the SVA

2. Product

2.1 Product description

Reactive resins based on polyurethane - containing solvent

These single- or 2-component reactive resins are manufactured using polyols (based on mineral oil or from sustainable raw materials) and isocyanates. They may contain solvents for adjusting favourable processing characteristics. They fulfil manifold, often specific, tasks in the construction, furnishing and repair of buildings. Using reactive resins based on polyurethane, containing solvent, decisively improves

the usability of buildings and significantly extends their service lives.

The product displaying the most environmental impacts was applied as a representative product for calculating the Life Cycle Assessment results.

2.2 Application

Reactive resins based on polyurethane, containing solvent, are used for the following applications: **Module 1:**

Reactive resins for protecting and repairing concrete structures

Products for **surface protection of concrete**, for increasing the durability of concrete and reinforced concrete structures as well as for new concrete and for maintenance and repair work (requirements 1.1), products for **structural bonding** of strengthening materials to an existing concrete structure (requirements 1.2)

Module 2:

Liquid-applied roof waterproofing kits
Reactive resins for waterproofing roof constructions
which are applied on site

Module 3:

Reactive resins for liquid-applied bridge deck waterproofing kits

Products for liquid-applied waterproofing for use on concrete bridge decks

Module 4:

Reactive resins as adhesives for tiles

Tile adhesives for internal and external tile installations on walls, floors and ceilings

Module 5:

Reactive resins for watertight covering kits
Products for waterproofing floors and/or walls in wet
rooms inside buildings

Module 6:

Reactive resins for liquid applied waterproofing for buildings

Liquid plastics for waterproofing buildings

Module 7:

Screed material and floor screeds

Products for screed / synthetic resin screed for use in floor constructions

Module 8:

Adhesives and sealants

Performance characteristics in accordance with the manufacturer's technical documentation / declaration of performance / declaration of conformity

Module 9:

Reactive resins for waterproofing concrete components or masonry and for pre-treating mineral substrates such as screed or concrete floors prior to flooring, parquet and tile work

Applications in accordance with the manufacturer's technical documentation / declaration of performance / declaration of conformity

Module 10:

Sealing for parquet floors, floor coatings and floor coverings

Reactive resins for the surface protection of wood and parquet floors, floor coatings and floor coverings in interior applications. The products are used for the manufacture and increase of usability and resistance of floors.

Module 11:

Reactive resins for visual design of concrete components

Products for usually coloured design of concrete with simultaneous, unspecific surface protection and improved permanence of concrete and reinforced concrete surfaces. The same applies for other mineral substrates such as plaster, stone and masonry, for example.

Owing to the currently higher material price of polyurethane and poorer adhesion to critical partial areas (such as glass and metal components) in components, only the final coating is often applied based on polyurethane in multiple-layer applications and one or more layers of epoxy resin applied beforehand.

2.3 Technical data

Module 1:

Reactive resins for protecting and repairing concrete structures

The minimum requirements of DIN EN 1504 "Products and systems for the protection and repair of concrete structures - Definitions, requirements, quality control and evaluation of conformity" must be maintained. These are:

- 1.1 **Surface protection** systems for concrete Requirements on performance characteristics for all intended uses in accordance with EN 1504-2, Tables 1 and 5:
 - Permeability to CO₂ (EN 1062-6:2002-10)
- Water vapour permeability (EN ISO 7783-1/-2:2012-02)
- Capillary absorption and permeability to water (EN 1062-3:2008-04)
- Adhesion strength by pull off test (EN 1542:1999-07)
- 1.2 Products for **structural bonding** Performance characteristics for all intended uses in accordance with Tables 3.1 and 3.2 (manufacturer's declaration of conformity / declaration of performance)

 Other performance characteristics in accordance with the manufacturer's technical documentation / declaration of performance / declaration of conformity

Module 2:

Liquid-applied roof waterproofing kits
The minimum requirements of ETAG 005:2005-02
"Guideline for the European technical approval for liquid-applied roof waterproofing kits" must be maintained.

The performance characteristics must be indicated in accordance with the European Technical Approval (ETA, No.).

Module 3:

Liquid-applied bridge deck waterproofing kits 3.1 The requirements of ZTV ING Part 7, section 3 (ZTV BEL-B Part 3) must be maintained.

The minimum requirements of ETAG 033:2010-09 "Guideline for the European technical approval for liquid-applied bridge deck waterproofing kits" must be maintained.

The performance characteristics must be indicated in accordance with the European Technical Approval (ETA, No.).

Module 4:

Adhesives for tiles

The minimum requirements of DIN EN 12004:2012-09 "Adhesives for tiles - Requirements, evaluation of conformity, classification and designation" must be maintained. These are:

- Initial shear adhesion strength (EN 12003:2009-01)
- Shear adhesive strength after water immersion (EN 12003:2009-01)
- Open time: tensile adhesion strength (EN 138921346:2007-11)

Other performance characteristics in accordance with the manufacturer's technical documentation / declaration of performance / declaration of conformity

Module 5:

Watertight covering kits

5.1 The minimum requirements of ETAG 022:2007-07 "Guideline for the European Technical Approval of watertight covering kits for wet room floors and/or walls" must be maintained.

The performance characteristics must be indicated in accordance with the European Technical Approval (ETA, No.).

5.2 The minimum requirements of the "Testing principles for granting a general building authority approved test certificate for liquid applied waterproofing materials used in conjunction with tiles and paving. Part 1: Liquid waterproofing materials (PG-AIV-F)" must be maintained.

The characteristics in accordance with the "Testing principles for granting a general building authority approved test certificate for waterproofing materials used in conjunction with tiles and paving. Part 1: Liquid waterproofing materials (PG-AIV-F)" must be indicated.

Module 6:

Liquid applied waterproofing for buildings

The minimum requirements of the "Testing principles for granting a general building authority approved test certificate for waterproofing buildings with liquid plastics" must be maintained.

The characteristics for the proof of applicability must be indicated in accordance with the "Testing principles for granting a general building authority approved test certificate for waterproofing buildings with liquid applied plastics".

Module 7:

Screed material and floor screeds

The minimum requirements of EN 13813 "Screed material and floor screeds – Screed materials – Properties and requirements" must be maintained. For synthetic resin screeds, these are:

- Bond strength (EN 13892-8:2003-02)
- Reaction to fire (EN 13501-1:2010-01)

Other performance characteristics in accordance with the manufacturer's technical documentation / declaration of performance / declaration of conformity

Module 8:

Adhesives and sealants

Performance characteristics in accordance with the manufacturer's technical documentation / declaration of performance / declaration of conformity

Module 9:

Waterproofing concrete components or masonry
At least the following requirements must be fulfilled:

Characteris- tics	Standard	Unit	Value
Viscosity	EN ISO 3219: 1994-10	Pa∙s	< 50
Shore hardness A	DIN 53505: 2008-08	-	15 – 100
Shore hardness D	DIN 53505: 2008-08	-	5 – 95
Density	EN ISO 2811: 2011-06	kg/dm³	0.7 – 2.5

Other performance characteristics in accordance with the manufacturer's technical documentation / declaration of performance / declaration of conformity

Module 10:

Sealing for parquet floors, floor coatings and floor coverings

Properties such as chemical resistance, scratch resistance, abrasion resistance (DIN EN ISO 5470:1999-09), non-slip features (DIN 18032:2001-04)

or side-bonding in line with information provided by the manufacturer.

Other performance characteristics in accordance with the manufacturer's technical documentation / declaration of performance / declaration of conformity

Module 11:

Reactive resins for visual design of concrete components

Physical data on the coating material and/or coating must be indicated in accordance with the respective product standards; these can include, for example:

- Viscosity EN ISO 3219:1994-10
- Density EN ISO 2811:2011-06
- Pendulum damping ISO 1522:2007-04
- Reaction to fire EN 13501-1:2010-01
- Tensile strength EN 13892-8:2003-02

Other performance characteristics in accordance with the manufacturer's technical documentation / declaration of performance / declaration of conformity

2.4 Placing on the market / Application rules *Module 1:*

Reactive resins for the protecting and repairing of concrete components

A prerequisite for placing the product on the market and application in Germany is the CE marking of the products.

Before 30 June 2013, the legal basis for this is represented by Council Directive 89/106/EEC; as of 1 July 2013, Directive (EU) no. 305/2011 of the European Parliament and Council (ABI. I 88/5 dated 4.4.2011) shall apply in national law along with the respective implementation guidelines. Construction products placed on the market prior to 1 July 2013 in compliance with Directive 89/106/EEC are regarded as being conformant with Directive (EU) no.305/2011. CE marking based on Directive 89/106/EEC confirms conformity with the technical specifications. This is the DIN EN 1504 ~ "Products and systems for the protection and repair of concrete structures". CE marking in accordance with Directive (EU) no. 305/2011 confirms conformity with its declared performance.

As for the rest, the provisions in Part II of the list of technical building regulations shall apply.

Module 2:

Liquid-applied roof waterproofing kits

A prerequisite for placing the product on the market and application in Germany is the CE marking of the products.

Before 30 June 2013, the legal basis for this is represented by Council Directive 89/106/EEC; as of 1 July 2013, Directive (EU) no. 305/2011 of the European Parliament and Council (ABI. I 88/5 dated 4.4.2011) shall apply in national law along with the respective implementation guidelines. Construction products placed on the market prior to 1 July 2013 in compliance with Directive 89/106/EEC are regarded as being conformant with Directive (EU) no.305/2011. CE marking based on Directive 89/106/EEC confirms conformity with the technical specifications. This is the ETAG 005:2005-02 "Guideline for the European technical approval for liquid-applied roof waterproofing".

CE marking in accordance with Directive (EU) no. 305/2011 confirms conformity with its declared performance.

As for the rest, the provisions in Part II of the list of technical building regulations shall apply.

Module 3:

Liquid-applied bridge deck waterproofing kits
Before 30 June 2013, the legal basis for this is
represented by Council Directive 89/106/EEC; as of 1
July 2013, Directive (EU) no. 305/2011 of the
European Parliament and Council (ABI. I 88/5 dated
4.4.2011) shall apply in national law along with the
respective implementation guidelines. Construction
products placed on the market prior to 1 July 2013 in
compliance with Directive 89/106/EEC are regarded as
being conformant with Directive (EU) no.305/2011.
CE marking based on Directive 89/106/EEC confirms
conformity with the technical specifications. This is the
ETAG 033:2010-07 "Guideline for the European
technical approval for liquid-applied bridge deck
waterproofing kits".

CE marking in accordance with Directive (EU) no. 305/2011 confirms conformity with its declared performance.

As for the rest, the provisions in Part II of the list of technical building regulations shall apply. Special applications can also be regulated in accordance with ZTV ING.

Module 4:

Adhesives for tiles

A prerequisite for placing the product on the market and application in Germany is the CE marking of the products.

Before 30 June 2013, the legal basis for this is represented by Council Directive 89/106/EEC; as of 1 July 2013, Directive (EU) no. 305/2011 of the European Parliament and Council (ABI. I 88/5 dated 4.4.2011) shall apply in national law along with the respective implementation guidelines. Construction products placed on the market prior to 1 July 2013 in compliance with Directive 89/106/EEC are regarded as being conformant with Directive (EU) no.305/2011. CE marking based on Directive 89/106/EEC confirms conformity with the technical specifications. This is DIN EN 12004 ~ "Adhesives for tiles - Requirements, evaluation of conformity, classification and designation".

CE marking in accordance with Directive (EU) no. 305/2011 confirms conformity with its declared performance.

As for the rest, the provisions in Part II of the list of technical building regulations shall apply.

Module 5:

Watertight covering kits

Module 5.1:

A prerequisite for placing the product on the market and application in Germany is the CE marking of the products.

Before 30 June 2013, the legal basis for this is represented by Council Directive 89/106/EEC; as of 1 July 2013, Directive (EU) no. 305/2011 of the European Parliament and Council (ABI. I 88/5 dated 4.4.2011) shall apply in national law along with the respective implementation guidelines. Construction products placed on the market prior to 1 July 2013 in compliance with Directive 89/106/EEC are regarded as being conformant with Directive (EU) no.305/2011. CE marking based on Directive 89/106/EEC confirms conformity with the technical specifications. This is the ETAG 022:2005-02 "Guideline for the European technical approval for watertight covering kits for wet room floors and or walls".

CE marking in accordance with Directive (EU) no. 305/2011 confirms conformity with its declared performance.

As for the rest, the provisions in Part II of the list of technical building regulations shall apply.

Module 5.2:

A prerequisite for application in Germany is the marking of the products with the mark of conformity (Ü symbol) based on a general building authority test certificate (abP) in accordance with Building Regulation List A, Part 2, consec. no. 2.50.

Module 6:

Liquid applied waterproofing for buildings
A prerequisite for application in Germany is the marking of the products with the mark of conformity (Ü symbol) based on a general building authority test certificate (abP) in accordance with Building Regulation List A, Part 2, consec. no. 2.51.

Module 7:

Screed material and floor screeds

A prerequisite for placing the product on the market and application in Germany is the CE marking of the products.

Before 30 June 2013, the legal basis for this is represented by Council Directive 89/106/EEC; as of 1 July 2013, Directive (EU) no. 305/2011 of the European Parliament and Council (ABI. I 88/5 dated 4.4.2011) shall apply in national law along with the respective implementation guidelines. Construction products placed on the market prior to 1 July 2013 in compliance with Directive 89/106/EEC are regarded as being conformant with Directive (EU) no.305/2011. CE marking based on Directive 89/106/EEC confirms conformity with the technical specifications. This is the DIN EN 13813 "Screed material and floor screeds -Screed materials - Properties and requirements". CE marking in accordance with Directive (EU) no. 305/2011 confirms conformity with its declared performance.

As for the rest, the provisions in Part II of the list of technical building regulations shall apply.

Module 8:

Adhesives and sealants

Applications in accordance with the manufacturer's technical documentation / declaration of performance / declaration of conformity

Module 9:

Reactive resins for waterproofing concrete components or masonry and for pre-treating mineral substrates such as screed or concrete floors prior to flooring, parquet and tile work

The DIN 18356:2012-10 and DIN 18365:2012-09 or comparable national or international rules (see CEN/TS 14472:2003-10, Parts 1-4 and CEN/TS 15717:2008-07) are of relevance for carrying out parquet and flooring work.

Special applications in accordance with the manufacturer's technical documentation / declaration of performance / declaration of conformity

Module 10:

Sealing for parquet floors, floor coatings and floor coverings

EU Directive 2004/42 on VOC limits in paints and varnishes. Requirement as per AgBB scheme for VOC emissions by parquet varnishes.

Special applications in accordance with the manufacturer's technical documentation / declaration of performance / declaration of conformity

Module 11:

Reactive resins for visual design of concrete components

If available, the respective standard and/or general technical approval or comparable national or international regulation must be indicated. Special applications in accordance with the manufacturer's technical documentation / declaration of performance / declaration of conformity

2.5 Delivery status

Liquid or pasty in containers made of tinplate or plastic appropriately prepared in separate or combi-containers for the practical mixing ratio. One kg of product in individual containers. Sealants in plastic cartridges and poly-tube bags made of foil compound materials. Typical container sizes contain approx. 1 to 25 kg of material; for more extensive applications, vats containing approx. 200 kg or IBCs containing more than 1 tonne are also used.

A ratio of 1:2 for tinplate to plastic packaging was assumed for the Life Cycle Assessment.

2.6 Base materials / Auxiliaries

Reactive resins based on polyurethane and containing solvents can be formulated as single- or dualcomponent materials. They contain polyether and/or polyester polyols (on mineral oil basis or from sustainable raw materials), homologues, pre-polymers and polymers based on MDI, TDI, HDI or IPDI and solvents in a concentration of up to 50%, possible segregated by resin and curing agent component. The components can contain auxiliaries such as fillers, pigments, accelerators, catalysts, wetting agents, foam regulators or inert diluents for fine-tuning the product features (application or marketing restrictions must be adhered to). Curing takes place after installation on site and using the inherent isocyanate component. The products are largely processed as singlecomponent systems; in the case of dual-component systems, the mixing ratio for resin and curing agent is adjusted according to the stoichiometric requirements. Product curing commences directly after the components are mixed.

On average, the products covered by this EPD contain the following ranges of base materials and auxiliaries referred to:

Resin component: ~ 5-25% Curing agent component: ~ 20-60% Solvents: < 50% Filler materials: ~ 0-50% Additives / Pigments: ~ 0-10%

These ranges are average values and the composition of products complying with the EPD can deviate from these concentration levels in individual cases. More detailed information is available in the respective manufacturer's documentation (e.g. product data sheets).

In individual cases, it is possible that substances on the list of materials of particularly high concern for inclusion in Annex XIV of the REACH regulation are contained in concentrations exceeding 0.1%. If this is the case, this information can be found on the respective safety data sheet.

2.7 Production

The product components formulated are usually mixed together from the ingredients in batch mode and filled into the containers, whereby quality standards in accordance with DIN ISO 9001:2008-12 and the provisions outlined in the relevant regulations such as the Industrial Safety Regulation and Federal Pollution Control Act are adhered to.

2.8 Environment and health during production As a general rule, no other environmental protection measures other than these specified by law are

measures other than those specified by law are necessary.

2.9 Product processing / Installation

Reactive resins based on polyurethane, containing solvents, are processed by trowelling/knife-coating or rolling, pouring or spraying, whereby health and safety measures (ventilation, respiratory equipment, explosion protection) are to be taken and consistently adhered to in accordance with the information on the safety data sheet and conditions on site.

On account of their composition, polyurethane products containing solvents are usually allocated to the PU 50 ff GISBAU product code.

Suitable measures (ventilation, extraction) must ensure that the occupational exposure limits are maintained; explosion protection must be observed.

2.10 Packaging

A detailed description of packaging is provided in section 2.5. Empty containers and clean foils can be recycled.

Wooden reusable pallets are taken back by the building material trade (reusable pallets remunerated in the German deposit system) which returns them to the construction product manufacturer who in turn redirects them into the production process.

2.11 Condition of use

During the use phase, reactive resins based on polyurethane, containing solvents, are cured and essentially comprise an inert three-dimensional network.

They are long-lasting products which protect our buildings in the form of adhesives, coatings or sealants as well as making an essential contribution towards their function and conservation of value.

2.12 Environment and health during use *Option 1*

Products for applications outside indoor areas with permanent stay of people

During use, reactive resins based on polyurethane, containing solvents, lose their reactive capacity and are inert

No risks are known for water, air and soil if the products are used as designated

Option 2

Products for applications inside indoor areas with permanent stay of people

When used in indoor areas with permanent stay of people, evidence of the emission performance of construction products in contact with indoor air must be submitted. These can be in accordance with the following test schemes, for example: AgBB-VOC scheme, EMICODE® of the GEV (Gemeinschaft Emissionskontrollierte Verlegewerkstoffe, Klebstoffe und Bauprodukte e.V., Düsseldorf). No further influences by emissions on the environment and health are known.

2.13 Reference service life

Reactive resins based on polyurethane, containing solvents, comply with a variety of, often specific, tasks in the construction or refurbishment of building structures. They decisively improve the usability of building structures and significantly extend their original service lives.

The anticipated reference service life depends on the specific installation situation and the exposure associated with the product. It can be influenced by weathering as well as mechanical or chemical loads.

2.14 Extraordinary effects

Fire

Even without any special fire safety features, reactive resins based on polyurethane or SMP, filled or aqueous/solvent-free, comply with at least the requirements of DIN EN 13501-1 standard for fire classes E and Efl. In terms of the volumes applied, they only have a subordinate influence on the fire performance characteristics of the building structure in which they are installed. As networked polyurethane resins do not melt or drip, the resins do not contribute towards spreading fire.

Water

The reactive resins based on polyurethane, containing solvents, are chemically inert and insoluble in water. They are often used to protect building structures from harmful water ingress / the effects of flooding.

Mechanical destruction

The mechanical destruction of reactive resins based on polyurethane does not lead to any decomposition products which are harmful for the environment or health.

2.15 Re-use phase

According to present knowledge, no environmentallyhazardous effects in terms of landfilling are to be generally anticipated through dismantling and recycling components to which hardened polyurethane products adhere.

If polyurethane systems can be removed from the components at no great effort, thermal recovery is a practical recycling variant on account of its energy content.

2.16 Disposal

Individual components which can no longer be recycled must be combined at a specified ratio and hardened.

Hardened product residue is not special waste. Non-hardened product residue is special waste.

Empty, dried containers (free of drops and scraped clean) are directed to the recycling process. Residue must be directed to proper waste disposal taking consideration of local guidelines.

The following EWC/AVV waste codes can apply: Hardened product residue: 080112 Paint and varnish waste with the exception of those covered by 08 01 11 080410 Adhesive and sealant compound waste with the exception of those covered by 08 04 09

2.17 Further information

More information is available in the manufacturer's product or safety data sheets and is available on the manufacturer's websites or on request. Valuable technical information is also available on the associations' websites.

TKB instructions, for example, are available at www.klebstoffe.com or information on Deutsche Bauchemie is available at www.deutsche-bauchemie.de.

3. LCA: Calculation rules

3.1 Declared unit

The association EPD refers to the declared unit of 1 kg reactive resin product in the mixing ratio required for processing both components. Consumption per unit area of the products to be applied extensively can range between only a few hundred grams and more than 1 kg per square metre. In the case of products which are injected, the application volume depends on the component to be injected.

This EPD includes an LCA for reactive resin products based on solvent contents of up to 50%.

The product with the highest environmental impact in the product groups was declared.

Declared unit

Boolai oa ai iit		
Description	Value	Unit
Declared unit	1	kg
Conversion factor to 1 kg	1	-

3.2 System boundary

Modules A1/A2/A3, A4, A5 and D are taken into consideration in the LCA:

- A1 Manufacture of preliminary products
- A2 Transport to plant
- A3 Production incl. provision of energy, manufacture of packaging, auxiliaries and consumables, waste treatment)

- A4 Transport to site
- A5 Installation (disposal of packaging and emissions during installation)
- D Credits from incineration of packaging materials and recycling the metal container

The Declaration is therefore from the "cradle to plant gate, with options".

3.3 Estimates and assumptions

Where no specific GaBi processes were available, the individual recipe ingredients of formulae were estimated on the basis of information provided by the manufacturer or literary sources.

3.4 Cut-off criteria

No cut-off criteria were applied for calculating the LCA. All raw materials submitted by the associations for the formulae were taken into consideration.

The manufacture of machinery, plants and other infrastructure required for production of the products under review was not taken into consideration in the LCA.

3.5 Background data

Data from the GaBi 5 data base was used as background data. Where no background data was

available, it was supplemented by manufacturer information and literary research.

3.6 Data quality

Representative products were applied for this sample EPD and the product in a group displaying the highest environmental impact was applied for calculating the LCA results. The data sets are no more than 7 years old. The data was taken from the GaBi 5:2010 data bases and is therefore consistent.

3.7 Period under review

The review period concerns annual production for the year 2011.

3.8 Allocation

No allocations were applied for production. A multiinput allocation with a credit for electricity and thermal energy was used for incineration of packaging in accordance with the simple credit method. The credits achieved through packaging disposal are offset in Module D.

3.9 Comparability

As a general rule, a comparison or evaluation of EPD data is only possible when all of the data to be compared has been drawn up in accordance with DIN EN 15804 and the building context or product-specific characteristics are taken into consideration. In this case, 1 kg reactive resin was selected as the declared unit. Depending on the application, a corresponding conversion factor such as the specific unit area must be taken into consideration.

As a general rule, a comparison or evaluation of EPD data is only possible when all of the data to be compared has been drawn up in accordance with DIN EN 15804 and the building context or product-specific characteristics are taken into consideration.

4. LCA: Scenarios and additional technical information

The following technical information forms the basis for the declared modules or can be used for developing specific scenarios in the context of a building evaluation if modules are not declared (MND).

Transport to site (A4)

Description	Value	Unit	
Litres of fuel	0.0016	l/100 km	
Transport distance	500	km	
Capacity (incl. empty runs)	85	%	
Cross density of products transported	900 -	kg/m ³	
Gross density of products transported	1300	Kg/III	
Volume capacity factor	100	-	

Construction installation process (A5)

Description	Value	Unit
Material loss	0.01	kg
VOC into air	0.1 - 0.5	kg

5. LCA: Results

SYS	ГЕМ В	OUNE	ARIES	S (X =	INCLU	JDED I	N TH	E LCA	MNE) = MO	DULE	NOT E	ECLA	(RED)		
Product stage Construction process stage							Use stage				End-of-life stage			Benefits and loads beyond the system boundaries		
Raw material supply	Transport	Production	Transport from manufacturer to site	Assembly	Use / Application	Maintenance	Repairs	Replacement	Renewal	Operational energy use	Operational water use	De-construction	Transport	Waste treatment	Landfilling	Re-use, recovery or recycling potential
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	B6	В7	C1	C2	C3	C4	D
Х	Х	Х	Х	Χ	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	X
LCA	RESU	LTS –	ENVI	RONM	IENTA	L IMP	ACT:	1 kg Pl	J read	ctive re	sin c	ontaini	ng so	lvents		
	Parameter							Unit A1 - A3		A4				D		
			al Warmir					[kg CO ₂ equiv.]		5.75E+0		2.58E-2	2	1.25E-1		-1.25E-1
		Ozor	ne Depleti	on Poten	tial			[kg CFC11 2.22E-8		1.38E-12 4.5E-12		12	-1.34E-10			
	Ad	cidification	n Potentia	of soil a	nd water		[kg	[kg SO ₂ equiv.] 1.02E-2		1.64E-4 1.45E-5		-5	-3.15E-4			
			utrification					kg (PO₄) ³ equiv.] 1.5E-3		4.06E-5 2.94E-6		-6	-2.77E-5			
	Pho	otochemi	cal Ozone	e Creation	n Potentia			kg ethene equiv.] 2.19E-3		-7.03E-5 1.8E-1			-4.39E-5			
					sil Resou		[k	g Sb equi	/.]	2.51E-5 1.23E+2		1.18E-9 1.82E			-6.35E-9	
					Resource			[MJ]				3.56E-		2.96E	:-2	-1.66E+0
LCA	RESU	LIS-	USE	OF RE	SOUR	CES:	1 kg l	'U rea	ctive	resin c	ontaii	ning so	lvents	5		
			Parar					Unit A1 - A3		A4				D		
					energy ca			[MJ]		32E+0					-	
					aterial utilis			[MJ] 0.0E+0					-			
					nergy sou			[MJ] 4.32E+0 ′ [MJ] 9.95E+1		1.42E-2 2.19E-3		3	-6.74E-2 -			
-	Non-ren	enewable r	primary or	energy as	s energy o material u	ilication		[MJ] 9.99E+1 [MJ] 2.45E+1							-	
					energy s		+				3.56E-1 2.96E-2			-1.66E+0		
	. Ottal Ge		of second					[kg] 0.0E+0						-		
			ewable se					[MJ] 2.9E-3			3.01E-6 4.01E-7			,	7.66E-4	
			enewable								3.16E-5 4.2E-6				8.07E-3	
			let use of t							1.32E-3 2.53E-3			-6.09E-2			
LCA	RESU	<u>LTS –</u>	OUTF	PUT FL	LOWS	AND I	NAST	E CAT	EGO	RIES: 1	kg P	U reac	tive re	sin co	ntaini	ng solvents
	Parameter							Unit A1 - A3		A4 A5			D			
	Hazardous waste for disposal							[kg] -					-			
-	Disposed of, non-hazardous waste							[kg]			1.88E-3 5.94E-3 5.03E-7 1.52E-6			-6.31E-1		
Disposed of, radioactive waste Components for re-use								[kg] [kg]	2.	16E-3 -	+	5.03E-7		1.5ZE-6)	-3.57E-5 -
Materials for recycling								[kg]		-	+			-		-
Materials for energy recovery								[kg]		-	+	-		-		-
	Exported electrical energy									-		-		1.77E-1		-
	Exported thermal energy									-		-		4.27E-1		-

[&]quot;Hazardous waste for disposal" indicator: No Declaration in accordance with the Expert Committee (SVA) decision of 4.10.2012

6. LCA: Interpretation

The main share of **non-renewable primary energy requirements** is consumed during manufacture of the preliminary products (Module A1). This is also attributable to the fact that almost exclusively preliminary products from fossil raw materials are involved which are usually associated with energy-intensive manufacturing processes. Primarily crude oil and natural gas are used. Of the preliminary products, especially resin and curing agent components as well as solvents have a significant influence on the result.

At less than 5% of overall primary energy, the share of **renewable primary energy** is very low. The contributions made by preliminary products (A1) and production (A3) to renewable primary requirements are obvious. In the case of A1, the renewable

percentage of the power mix is the main cause while the wooden pallets for packaging are responsible in A3 as solar energy is required for photosynthesis during wood production (growth).

At 90%, the main influential factor for the **Global Warming Potential (GWP)** involves the provision of preliminary products, whereby the greatest influence on the GWP is exerted by the curing agent component. Solvents also make significant contributions to the GWP. But actual production also has a visible influence of up to $\sim 5\%$ which is attributable to the energy required and manufacturing of packaging materials. Packaging is incinerated during installation with the result that the ensuing emissions are also listed here.

More than 90% of the **Ozone Depletion Potential (ODP)** is dominated by the production of preliminary products. The curing agent component makes a significant contribution to the ODP while few emissions of ODP relevance arise during manufacture of the resin component. Preliminary products such as silicic acid or pigments can also make a tangible contribution to the results. Module A3, i.e. manufacture of reactive resins, also contributes to the final results. None of the other modules are of relevance for the Ozone Depletion Potential. In both cases, the main drivers are halogenated organic emissions from the German power mix (especially R114).

The Acidification Potential (AP) is primarily caused by nitric oxides and SO₂ which - as for all other modules - are primarily incurred during manufacture of the preliminary products (A1) and the actual products (A3). If pigments such as TiO₂ are included in the formula, the manufacture thereof can make a significant contribution to the AP despite low mass percentages. The primary resin and curing agent components also make significant contributions to the AP. Module A3 is responsible

for approx. 4% of the AP which is primarily attributable to the manufacture of packaging materials.

The **Eutrification Potential (EP)** is dominated by more than 94% by the manufacture of preliminary products, whereby the resin component plays the main role. The curing agent component also makes a significant contribution to the EP results as does the production of pigments (to a less extent as fewer volumes are used in the products). In Module A3 which only necessitates ~5% of the EP, most of the emissions are attributable to the manufacture of packaging as well as electricity consumption. The EP is primarily caused by various nitric oxide emissions into air and acid emissions into water.

In the case of the **Photochemical Ozone Creation Potential (POCP)**, the results are dominated by installation (A5) as this involves the solvents contained in the product being released. The exact contribution accounted for by installation depends on the solvent contents in the products and can account for up to 99%.

7. Requisite evidence

7.1 VOC

Special tests and evidence have not been carried out or provided within the framework of drawing up this sample Environmental Product Declaration.

Where the products are used in an area of application (e.g. recreation area) demanding testing/provision of VOC emissions in the recreation area, such evidence should always be submitted in the individual EPDs.

Classification/ EMICODE	EC1 Plus	EC1	EC2	RAL UZ 113 (*)	DIBt/AgBB
TVOC (C ₆ -C ₁₆) (after 3/28d)	750 / 60	1000 / 100	3000 / 300	1000 / 100	10000 / 1000
TSVOC (C ₁₆₋ C ₂₂) (after 28d)	40	50	100	50	100
C1, C1 – Materials	10* / 1**	10* /1 **	10* / 1**	10* / 1**	10* / 1**
* Total after 3d					
** for each material after 28d					
Total formaldehyde / acetaldehyde	50/50	50/50	50/50	50/50	-/-
[ppb] (after 3d)					
Total VOC without NIK and non-	40	-	-	40	100
identifiable materials (after 28d)					
R-value (after 28d)	1	-	-	1	1

(*) e.g. for flooring adhesives; additional RAL UZ can be of relevance for other dispersion-based products.

Measuring process: GEV test method for determining the emissions of volatile organic compounds from building products in accordance with DIN EN ISO 16000 Parts 3, 6, 9 and 11 in a test chamber. Testing for CMR substances and TVOC/TSVOC after 3 and 28 days.

The corresponding test certificate (e.g. EMICODE licence, Blue Angel as per RAL 113) shall apply as

evidence. If necessary, the results are to be provided in the form of the emission class.

Evidence pertaining to VOC can be listed for selected products or applications (e.g. recreation area). The following limit values apply (maximum values in [µg/m³]):

8. References

Institut Bauen und Umwelt e.V., Königswinter (pub.):

General Principles for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2011-09

Product Category Rules for Building Products, Part A: Calculation rules for the Life Cycle Assessment and requirements on the background report, 2012-09

Environmental labels and declarations – Type III environmental declarations – Principles and procedures.

EN 15804:2012-04

Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products.

DIN EN ISO 14025:2011-10

PCR 2011, Part A

Institut Bauen und Umwelt e.V., Königswinter (pub.): Product Category Rules for Building Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part A: Calculation rules for the Life Cycle Assessment and requirements on the background report, 2011-07

http://www.bau-umwelt.de/www.bau-umwelt.de

PCR 2011, Part B

Product Category Rules for Building Products, Part B: Requirements on the EPD for reactive resin products, 2011-06

www.bau-umwelt.de

ISO 14025

DIN EN ISO 14025:2009-11, Environmental labels and declarations – Type III environmental declarations – Principles and procedures.

DIN EN 15804

DIN EN 15804:2011-04, Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products

2000/532/EC

Commission decision dated 3 May 2000 replacing decision 94/3/EC on a waste directory in accordance with Article 1 a) of Council Directive 75/442/EEC on waste and Council decision 94/904/EC on a directory of hazardous waste in terms of Article 1, paragraph 4 of Directive 91/689/EEC on hazardous waste

DIN EN 1504-2:2005-01

Products and systems for the protection and repair of concrete structures – Definitions, requirements, quality control and evaluation of conformity – Part 2: Surface protection systems for concrete; German version EN 1504-2:2004

DIN EN 1062-6:2002-10

Paints and varnishes – Coating materials and coating systems for exterior masonry and concrete – Part 6: Determination of carbon dioxide permeability; German version EN 1062-6:2002

DIN EN ISO 7783:2012-02

Paints and varnishes – Determination of water vapour permeability – Cup method (ISO 7783:2011); German version EN ISO 7783:2011

DIN EN 1062-3:2008-04

Paints and varnishes – Coating materials and coating systems for exterior substrates and concrete – Part 3: Determining water permeability; German version EN 1062-3:2008

DIN EN 1542-2:1999-07

Products and systems for the protection and repair of concrete structures – Test methods – Determining the adhesive strength in a pull-off test; German version EN 1542:1999

DIN EN 12003:2009-01

Adhesive for tiles – Determining the shear strengths of reactive resin adhesives; German version EN 12003:2008

DIN EN 1346:2007-11

Adhesive for tiles – Determining the open time; German version EN 1346:2007

DIN EN 13892-8:2003-02

Test procedures for masonry – Part 8: Determining tensile strength; German version EN 13892-8:2002

DIN EN 13501-1:2010-01

Classification of building products and methods by fire performance – Part 1: Classification with the results of tests on fire performance by building products; German version EN 13501-1:2007 + A1:2009

DIN EN ISO 3219:1994-10

Plastics – Polymers/Resins in liquid state or as emulsions or dispersions – Determination of viscosity using a rotational viscometer with defined shear rate (ISO 3219:1993); German version EN ISO 3219:1994

DIN EN ISO 2811-1:2011-06

Paints and varnishes – Determination of density – Part 1: Pycnometer method (ISO 2811-1:2011); German version EN ISO 2811-1:2011

DIN EN ISO 5470-1:1999-09

Rubber- or plastic-coated fabrics – Determination of abrasion resistance – Part 1: Taber abrader (ISO 5470-1:1999); German version EN ISO 5470-1:1999

DIN V 18032-2:2001-04

Halls and rooms for sports and multi-purpose use – Part 2: Floors for sporting activities; Requirements, testing

DIN EN ISO 3219:1994-10

Polymers/Resins in liquid state or as emulsions or dispersions – Determination of viscosity using a rotational viscometer with defined shear rate (ISO 3219:1993); German version EN ISO 3219:1994

DIN EN ISO 2811-1:2011-06

Paints and varnishes – Determination of density – Part 1: Pycnometer method (ISO 2811-1:2011); German version EN ISO 2811-1:2011

DIN EN ISO 1522:2007-04

Paints and varnishes – Pendulum damping test (ISO 1522:2006); German version EN ISO 1522:2006 ???

DIN EN 13501-1:2010-01

Classification of building products and methods by fire performance – Part 1: Classification with the results of tests on fire performance by building products; German version EN 13501-1:2007 + A1:2009

DIN EN 13892-8:2003-02

Test procedures for masonry – Part 8: Determining tensile strength; German version EN 13892-8:2002

DIN EN 12004:2012-09

Adhesive for tiles – Requirements, evaluation of conformity, classification and designation; German version EN 12004:2007+A1:2012

DIN EN 13813:2003-01

Screed material and floor screeds – Screed materials – Properties and requirements; German version EN 13813:2002

DIN EN 18356:2012-10

German construction tendering and contract regulations – Part C: General technical contract conditions for construction (ATV) - Parquet flooring

DIN 18365:2012-09

German construction tendering and contract regulations – Part C: General technical contract conditions for construction (ATV) - Flooring work

DIN 53505:2000-08

Testing rubber and elastomers – Hardness test to Shore A and Shore D

DIN EN ISO 9001:

Quality management systems – Requirements (ISO 9001:2008); trilingual version EN ISO 9001:2008

DIN CEN/TS 14472 -1 to 4:2003-10

Resilient, textile and laminate floor coverings – Design, preparation and installation – Part 1: General; German version CEN/TS 14472-1:2003; Part 2: Textile floor coverings; German version CEN/TS 14472-2:2003; Part 3: Laminate floor coverings; German version CEN/TS 14472-3:2003; Part 4: Resilient floor coverings; German version CEN/TS 14472-4:2003

DIN CEN/TS 15717:2008-07

Parquet flooring – General guideline for installation; German version CEN/TS 15717:2008

DIN 53505:2000-08

Testing rubber and elastomers – Hardness test to Shore A and Shore D

ETAG 005:2005-02

Guideline for European Technical Approval of liquidapplied roof waterproofing kits, Part 1: General (ETAG 005); edition 2000-03; revision 2004-03

ETAG 033:2010-09

Liquid-applied coverings for concrete bridges

ETAG 022:2007-07

Part 1 Waterproofing for wet room walls and floors – Part 1: Liquid-applied coverings with or without wearing surface

DIN ISO 16000-3:2002-08

Indoor air – Part 3: Determination of formaldehyde and other carbonyl compounds by sampling using a pump (ISO 16000-3:2001)

DIN ISO 16000-6:2004-12

Indoor air – Part 6: Determination of volatile organic compounds indoors and in test chambers by sampling on TENAX TA®, thermal desorption and gas chromatography using MS or FID (ISO 16000-6:2004)

DIN EN ISO 16000-9:2008-04

Indoor air – Part 9: Determination of the emission of volatile organic compounds from building products and furnishings – Emission test chamber method (ISO 16000-9:2006); German version EN ISO 16000-9:2006

DIN EN ISO 16000-11:2006-06

Indoor air – Part 11: Determination of the emission of volatile organic compounds from building products and furnishings – Sampling, storage of samples and preparation of test specimens (ISO 16000-11:2006); German version EN ISO 16000-11:2006

GaBi 5 2010

GaBi 5: Software and data base for comprehensive analysis. LBP, University of Stuttgart and PE International, 2011

GaBi 5 2010b

GaBi 5: Documentation of GaBi 5 data sets from the data base for comprehensive analysis LBP, University of Stuttgart and PE International, 2011 http://documentation.gabi-software.

Institut Bauen und Umwelt e.V.

Publisher

Institut Bauen und Umwelt e.V. Rheinufer 108 53639 Königswinter Germany Tel. +49 (0)2223 296679-0 Fax +49 (0)2223 296679-0 E-mail info@bau-umwelt.com Web www.bau-umwelt.com

Institut Bauen und Umwelt e.V.

Programme holder

 Institut Bauen und Umwelt e.V.
 Tel.
 +49 (0)2223 296679-0

 Rheinufer 108
 Fax
 +49 (0)2223 296679-0

 53639 Königswinter
 E-mail info@bau-umwelt.com

 Germany
 Web
 www.bau-umwelt.com

PE INTERNATIONAL

Author of the Life Cycle Assessment PE INTERNATIONAL AG

PE INTERNATIONAL AG
Hauptstrasse 111
Fax
70771 Leinfelden-Echterdingen
Germany

Tel. +49 (0)711 341817-0
+49 (0)711 341817-25
E-mail info@pe-international.com
www.pe-international.com

Owner of the Declaration

Deutsche Bauchemie e.V.

Mainzer Landstrasse 55

Fax

49 (0)69 2556-1318

+40 (0)69 2556-1319

60329 Frankfurt

E-mail info@deutsche-bauchemie.de

www.deutsche-bauchemie.de

www.deutsche-bauchemie.de

Verband der deutschen Lack- und Druckfarbenindustrie e.V. Verband der deutschen Lack- und Druckfarbenindustrie e.V. Mainzer Landstrasse 55 60329 Frankfurt Germany Tel. +49 (0)69 2556-1411 Fax +49 (0)69 2556-1358 E-mail vdl@vci.de

Web www.lackindustrie.de

Industrieverband Klebstoffe e.V. Völklinger Strasse 4 4 40219 Düsseldorf Germany Tel. +49 (0)211 67931-10
Fax +49 (0)211 67931-33
E-mail info@klebstoffe.com
Web www.klebstoffe.com