Technical Documentation Sika AnchorFix®-1

Product Information

Sika Limited

TABLE OF CONTENTS

Chemical Resistance	3
Installation Parameters	5
Characteristic Resistance	6
Resistance Values	6
Characteristic Values for Steel	7
Using Sika AnchorFix-1 in Masonry	9
Installation Parameters	9
Edge Distances and Spacing	10
Characteristic Resistance	11
Types and Dimensions of Bricks and Blocks	12
Important Notes	14

CHEMICAL RESISTANCE

The chemical adhesive has undergone extensive chemical resistance testing. The results are summarised in the table below.

Aqueous Solution Acetic Acid Acetone 100% X Aqueous Solution Aluminium Chloride Aqueous Solution Aluminium Nitrate 10% X Ammonia Solution 5% X Jet Fuel 100% X Benzene 100% X Benzoic Acid Saturated V Benzyl Alcohol 100% X Sodium Hypochlorite Solution 5 - 15% Butyl Alcohol 100% C Calcium Sulphate Aqueous Solution Carbon Monoxide Carbon Tetrachloride 100% C Chlorine Water Saturated X Chloro Benzene 100% X Citric Acid Aqueous Solution Saturated V Cyclohexanol 100% C Chesel Fuel 100% C Ethanol Piesel Fuel 100% C Heptane 100% C Hydrogen Sulphide Gas 100% V Issoproyl Alcohol 100% V Issoproyl Alcohol 100% V Issoproyl Alcohol Linseed Oil 100% V Linseed Oil	Chemical Environment	Concentration	Result
Aqueous Solution Aluminium Chloride Aqueous Solution Aluminium Nitrate Aqueous Solution Aluminium Nitrate Aqueous Solution Benzole Benzene 100% ** Benzene 100% ** Benzole Acid Saturated ** Benzyl Alcohol 100% ** Sodium Hypochlorite Solution 5 - 15% ** Sodium Hypochlorite Solution 5 - 15% ** Carbon Monoxide Gas Carbon Tetrachloride 100% C Chlorine Water Chloro Benzene 100% ** Citric Acid Aqueous Solution Saturated ** Cyclohexanol 100% ** Cyclohexanol Diesel Fuel 100% Diethylene Glycol Ethanol 95% ** Ethanol Aqueous Solution 20% C Heptane 100% C Heptane 100% C Heydrogen Sulphide Gas 100% ** Isoproyl Alcohol 100% ** Isoproyl Alcohol Iow ** Isoproyl Alcohol	Aqueous Solution Acetic Acid	10%	✓
Aqueous Solution Aluminium Nitrate Ammonia Solution Fig. 4 Jet Fuel Jone Fuel Benzene Jone Fuel Jone Juliant Juli	Acetone	100%	×
Ammonia Solution 5% Jet Fuel 100% Benzene 100% Benzoic Acid Saturated Sodium Hypochlorite Solution 5 - 15% Butyl Alcohol 100% Calcium Sulphate Aqueous Solution Saturated Carbon Monoxide Gas Carbon Tetrachloride 100% Chlorine Water Saturated Chloro Benzene 100% Citric Acid Aqueous Solution Saturated Cyclohexanol 100% Diesel Fuel 100% Diethylene Glycol 100% Ethanol 95% Ethanol Aqueous Solution 20% CHeptane 100% Hydrochloric Acid 15% Z5% CHydrogen Sulphide Gas 100% Isoproyl Alcohol 100% X	Aqueous Solution Aluminium Chloride	Saturated	✓
Jet Fuel 100%	Aqueous Solution Aluminium Nitrate	10%	√
Benzene 100%	Ammonia Solution	5%	×
Benzoic Acid Benzyl Alcohol Sodium Hypochlorite Solution Sodium Hypochlorite Solution Butyl Alcohol 100% C Calcium Sulphate Aqueous Solution Carbon Monoxide Gas Carbon Tetrachloride Chlorine Water Chloro Benzene 100% Citric Acid Aqueous Solution Saturated Cyclohexanol Diesel Fuel 100% C Chlow Ethanol Ethanol Heptane 100% C C C Hydrogen Sulphide Gas 100% X X X X X X X X X X X X X	Jet Fuel	100%	×
Benzyl Alcohol 100% Sodium Hypochlorite Solution 5 - 15% Butyl Alcohol 100% C Calcium Sulphate Aqueous Solution Saturated Carbon Monoxide Gas Carbon Tetrachloride 100% C Chlorine Water Saturated Chloro Benzene 100% Citric Acid Aqueous Solution Saturated Cyclohexanol 100% Diesel Fuel 100% Diethylene Glycol 100% Ethanol Aqueous Solution 20% C C C C C C C C C C C C C C C C C C	Benzene	100%	×
Sodium Hypochlorite Solution 5 - 15% Butyl Alcohol 100% C Calcium Sulphate Aqueous Solution Saturated Carbon Monoxide Gas Carbon Tetrachloride 100% C Chlorine Water Saturated Chloro Benzene 100% Citric Acid Aqueous Solution Saturated Cyclohexanol 100% Diesel Fuel 100% Diethylene Glycol 100% Ethanol Aqueous Solution 20% Ethanol Aqueous Solution C Heptane 100% Heydrochloric Acid Hydrochloric Acid Solution Solution	Benzoic Acid	Saturated	√
Butyl Alcohol 100% C Calcium Sulphate Aqueous Solution Saturated ✓ Carbon Monoxide Gas ✓ Carbon Tetrachloride 100% C Chlorine Water Saturated ✓ Chloro Benzene 100% ★ Citric Acid Aqueous Solution Saturated ✓ Cyclohexanol 100% ✓ Diesel Fuel 100% ✓ Diethylene Glycol 100% ✓ Ethanol Aqueous Solution 20% C Heptane 100% C Heptane 100% C Hexane 100% C Hydrogen Sulphide Gas 100% ✓ Isoproyl Alcohol 100% ✓ Saturated Manurated Ma	Benzyl Alcohol	100%	×
Calcium Sulphate Aqueous Solution Carbon Monoxide Gas Carbon Tetrachloride Chlorine Water Chloro Benzene Citric Acid Aqueous Solution Cyclohexanol Diesel Fuel Diethylene Glycol Ethanol Heytane Hexane 100% C C Heydrogen Sulphide Gas Isoproyl Alcohol Saturated Saturated X Combana Saturated Incombana Incomb	Sodium Hypochlorite Solution	5 - 15%	√
Carbon Monoxide Carbon Tetrachloride 100% C Chlorine Water Saturated X Chloro Benzene 100% X Citric Acid Aqueous Solution Cyclohexanol 100% Diesel Fuel 100% Diethylene Glycol 100% Ethanol 4 Ethanol Aqueous Solution 20% C Heptane 100% C Heytane 100% C Heytane 100% C Hydrogen Sulphide Gas 100% X	Butyl Alcohol	100%	С
Carbon Tetrachloride 100% C Chlorine Water Saturated Chloro Benzene 100% Citric Acid Aqueous Solution Saturated Cyclohexanol 100% Diesel Fuel 100% Diethylene Glycol 100% Ethanol 95% Ethanol Aqueous Solution 20% C C Heptane 100% Hexane 100% C C Hydrogen Sulphide Gas 100% Isoproyl Alcohol 100% ** ** ** ** ** ** ** ** **	Calcium Sulphate Aqueous Solution	Saturated	√
Chlorine Water Chloro Benzene 100% Citric Acid Aqueous Solution Saturated Cyclohexanol 100% Diesel Fuel 100% Diethylene Glycol Ethanol Ethanol Aqueous Solution Ethanol Aqueous Solution Heptane 100% C Heytane 100% C Hydrogen Sulphide Gas 100% Isoproyl Alcohol	Carbon Monoxide	Gas	√
Chloro Benzene 100% Citric Acid Aqueous Solution Saturated Cyclohexanol 100% Diesel Fuel 100% Diethylene Glycol Ethanol Ethanol Aqueous Solution Ethanol Aqueous Solution Heptane 100% C Heptane 100% C Heyane 100% C Hydrochloric Acid 15% 25% C Hydrogen Sulphide Gas Isoproyl Alcohol 100% X	Carbon Tetrachloride	100%	С
Citric Acid Aqueous Solution Saturated Cyclohexanol Diesel Fuel Diethylene Glycol Ethanol Ethanol Aqueous Solution Heptane Hexane 100% C Heyane 100% C Hydrochloric Acid Isoproyl Alcohol Saturated 100% C 100% C 100% C 100% C 100% C 10% 10%	Chlorine Water	Saturated	×
Cyclohexanol 100% ✓ Diesel Fuel 100% ✓ Diethylene Glycol 100% ✓ Ethanol 95% X Ethanol Aqueous Solution 20% C Heptane 100% C Hexane 100% C Hydrochloric Acid 15% ✓ Hydrogen Sulphide Gas 100% ✓ Isoproyl Alcohol 100% X	Chloro Benzene	100%	×
Diesel Fuel 100% ✓ Diethylene Glycol 100% ✓ Ethanol 95% X Ethanol Aqueous Solution 20% C Heptane 100% C Hexane 100% C Hydrochloric Acid 15% ✓ 25% C Hydrogen Sulphide Gas 100% ✓ Isoproyl Alcohol 100% X	Citric Acid Aqueous Solution	Saturated	✓
Diethylene Glycol 100% ✓ Ethanol 95% ✗ Ethanol Aqueous Solution 20% C Heptane 100% C Hexane 100% C Hydrochloric Acid 15% ✓ 25% C Hydrogen Sulphide Gas 100% ✓ Isoproyl Alcohol 100% ✗	Cyclohexanol	100%	√
Ethanol 95% ★ Ethanol Aqueous Solution 20% C Heptane 100% C Hexane 100% C 10% ✓ 15% ✓ 25% C Hydrogen Sulphide Gas 100% ✓ Isoproyl Alcohol 100% ★	Diesel Fuel	100%	√
Ethanol Aqueous Solution 20% C Heptane 100% C Hexane 100% C 10% ✓ 10% ✓ 10% ✓ 10% ✓ 10% ✓ 15% ✓ 25% C Hydrogen Sulphide Gas 100% ✓ Isoproyl Alcohol 100% ★	Diethylene Glycol	100%	√
Heptane 100% C Hexane 100% C 10% ✓ Hydrochloric Acid 15% ✓ 25% C Hydrogen Sulphide Gas 100% ✓ Isoproyl Alcohol 100% ★	Ethanol	95%	×
Hexane 100% C Hydrochloric Acid 10% ✓ 15% ✓ 25% C Hydrogen Sulphide Gas 100% ✓ Isoproyl Alcohol 100% ★	Ethanol Aqueous Solution	20%	С
Hydrochloric Acid 15% 15% 25% C Hydrogen Sulphide Gas 100% ✓ Isoproyl Alcohol 100% ★	Heptane	100%	С
Hydrochloric Acid 15% 25% C Hydrogen Sulphide Gas 100% Isoproyl Alcohol 100% **	Hexane	100%	С
25% C Hydrogen Sulphide Gas 100% ✓ Isoproyl Alcohol 100% ★		10%	✓
Hydrogen Sulphide Gas 100% Isoproyl Alcohol 100% ** ** ** ** ** ** ** ** **	Hydrochloric Acid	15%	✓
Isoproyl Alcohol 100%		25%	С
	Hydrogen Sulphide Gas	100%	√
Linseed Oil 100% ✓	Isoproyl Alcohol	100%	×
	Linseed Oil	100%	√

Technical DocumentationSika AnchorFix-1
11 2025, 03

11 2025, 03 870 43 01

Lubricating Oil	100%	√
Mineral Oil	100%	√
Paraffin / Kerosene (Domestic)	100%	С
Phenol Aqueous Solution	1%	×
Phosphoric Acid	50%	√
Potassium Hydroxide	10% / pH13	С
Sea Water	100%	C
Styrene	100%	×
Sulphur Dioxide Solution	10%	√
Sulphur Dioxide (40°C)	5%	√
Culphusia Asid	10%	√
Sulphuric Acid	50%	✓
Turpentine	100%	С
White Spirit	100%	✓
Xylene	100%	×

 $[\]checkmark$ = Resistant to 75°C with at least 80% of physical properties retained.

C = Contact only to a maximum of 25°C.

x = Not Resistant

INSTALLATION PARAMETERS

Installation Parameters - Threaded Rods								
Size				M10	M12	M16	M20	M24
Nominal Drill Hole Diameter	do	[mm]	10	12	14	18	22	26
Diameter of Cleaning Brush	dь	[mm]	14	14	20	20	29	29
Torque Moment	T _{inst}	[Nm]	10	20	40	80	150	200
Minimum Embedment Depth	h _{ef}	[mm]	64	80	96	128	160	192
Maximum Embedment Depth	h _{ef}	[mm]	96	120	144	192	240	288
Minimum Edge Distance	C _{min}	[mm]	35	40	50	65	80	96
Minimum Spacing	S _{min}	[mm]	35	40	50	65	80	96
Minimum Member Thickness	h _{min}	[mm]	$h_{ef} + 30 \text{ mm} \ge 100 \text{mm}$ $h_{ef} + 2$			h _{ef} + 2d _o		

CHARACTERISTIC RESISTANCE

Characteristic Resistance - Combined Pullout & Concrete Cone Failure Using Threaded Rods For working life of 50 and 100 years										
Size					M10	M12	M16	M20	M24	
Characteristic Bond Resi Concrete, -40°C to 80°C	τ _{Rk,uncr}	N/mm²	9.0	8.0	9.0	9.5	8.5	8.0		
Partial Safety Factor	Dry Concrete Wet Concrete Flooded Holes	Υ _{Mp}	[-]	1.8						
			C30/37			1.	12			
Factor for Concrete		Ψc	C35/45			1.	19			
			C50/60	1.30						
Factor for influence of sustained load for a working life of 50 years	T1: -40°C to 80°C	Ψ ⁰ sus	[-]	0.78						

Splitting Failure									
Size	M8	M10	M12	M16	M20	M24			
Edge Distance	C _{cr,sp}	[mm]	2hef				1.5hef		
Spacing	S _{cr,sp}	[mm]		4hef 3hef					

RESISTANCE VALUES

Resistance Values for Threaded Rod in Uncracke Combined Pullout & Concrete Cone Failure and Concrete Cone Temperature Range: -40°C to 80°C		rete						
Property		Jnit			Anchor I	Diameter		
Property		JIIIL	M8	M10	M12	M16	M20	M24
Effective Embedment Depth = MIN = 8d	h _{ef}	[mm]	64	80	96	128	160	192
Design Resistance	N _{Rd}	[kN]	8.0	11.0	18.0	33.5	47.0	64.0
Effective Embedment Depth = 10d	h _{ef}	[mm]	80	100	120	160	200	240
Design Resistance	N _{Rd}	[kN]	10.0	13.5	22.5	42.0	59.0	80.0
Effective Embedment Depth = 12d	h _{ef}	[mm]	96	120	144	192	240	288
Design Resistance	N _{Rd}	[kN]	12.0	16.5	27.0	50.5	71.0	96.5

- 1. Resistance values are based on combined pullout & concrete cone failure and concrete cone failure according to
- ${\it EC2-4. Resistance for steel failure must also be considered-the lowest value controls.}$
- 2. Resistance values are for single anchors without close edges or eccentric loading considerations. The ratio of sustained tension loading is 0.
- ${\it 3. Tabulated \, values \, correspond \, to \, the \, above \, stated \, temperature \, range \, and \, installation \, conditions \, only.}$
- $4. \ Long \ term \ temperatures \ are \ those \ that \ remain \ roughly \ constant \ over \ prolonged \ periods. \ Short \ term \ temperatures \ occur \ over \ briefintervals, \ e.g.: \ diurnal \ cycling.$
- 5. The compressive strength of the concrete ($f_{ck,cylinder}$) is assumed to be 20 N/mm 2 .
- $6. \ Tabulated\ resistance\ values\ assume\ that\ the\ geometry\ of\ the\ anchor(s)\ and\ concrete\ member\ is\ sufficient\ to\ avoid\ splitting\ failure.$

CHARACTERISTIC VALUES FOR STEEL

Threaded Rods - Characteristic Values for Stee	l Failure (Tension)							
Size			M8	M10	M12	M16	M20	M24	
Steel Grade 5.8	N _{Rk,s}	kN	18	29	42	79	123	177	
Partial Safety Factor	y _{Ms}	[-]			1.	50			
Steel Grade 8.8	N _{Rk,s}	kN	29	46	67	126	196	282	
Partial Safety Factor	Y _{Ms}	[-]	1.50						
Steel Grade 10.9*	$N_{Rk,s}$	kN	37	58	84	157	245	353	
Partial Safety Factor	y _{Ms}	[-]			1.	40			
Stainless Steel Grade A4-70	N _{Rk,s}	kN	26	41	59	110	172	247	
Partial Safety Factor	Y _{Ms}	[-]			1.	90			
Stainless Steel Grade A4-80	N _{Rk,s}	kN	29	46	67	126	196	282	
Partial Safety Factor	y _{Ms}	[-]	1.60						
Stainless Steel Grade 1.4529	$N_{Rk,s}$	kN	26	41	59	110	172	247	
Partial Safety Factor	Y _{Ms}	[-]			1.	50			

^{*}Galvanized rods of high strength are sensitive to hydrogen induced brittle failure.

Threaded Rods - Characteristic Values for	Steel Failure (Shear – v	without	lever a	rm)				
Size			M8 M10 M12 M16 M20 M					M24	
Steel Grade 5.8	$V_{Rk,s}$	kN	9	15	21	39	61	88	
Partial Safety Factor	Y _{Ms}	[-]			1.	25			
Steel Grade 8.8	$V_{Rk,s}$	kN	15	23	34	63	98	141	
Partial Safety Factor	Y _{Ms}	[-]	1.25						
Steel Grade 10.9*	$V_{Rk,s}$	kN	18	29	42	79	123	177	
Partial Safety Factor	Y _{Ms}	[-]			1.	50			
Stainless Steel Grade A4-70	$V_{Rk,s}$	kN	13	20	30	55	86	124	
Partial Safety Factor	Y _{Ms}	[-]			1.	56			
Stainless Steel Grade A4-80	$V_{Rk,s}$	kN	15	23	34	63	98	141	
Partial Safety Factor	Y _{Ms}	[-]	1.33						
Stainless Steel Grade 1.4529	$V_{Rk,s}$	kN	13	20	30	55	86	124	
Partial Safety Factor	y _{Ms}	[-]			1.	25			

^{*}Galvanized rods of high strength are sensitive to hydrogen induced brittle failure.

Threaded Rods - Characteristic Values	for Steel Failure (Shear –	with lev	er arm)					
Size			M8	M10	M12	M16	M20	M24	
Steel Grade 5.8	M ⁰ _{Rk,s}	N.m	19	37	66	166	325	561	
Partial Safety Factor	Y _{Ms}	[-]			1.	25			
Steel Grade 8.8	M ⁰ _{Rk,s}	N.m	30	60	105	266	519	898	
Partial Safety Factor	Y _{Ms}	[-]			1.	25			
Steel Grade 10.9*	M ⁰ _{Rk,s}	N.m	37	75	131	333	649	1123	
Partial Safety Factor	Y _{Ms}	[-]			1.	50			
Stainless Steel Grade A4-70	M ⁰ _{Rk,s}	N.m	26	52	92	233	454	786	
Partial Safety Factor	Y _{Ms}	[-]			1.	56			
Stainless Steel Grade A4-80	M ⁰ _{Rk,s}	N.m	30	60	105	266	519	898	
Partial Safety Factor	Y _{Ms}	[-]	1.33						
Stainless Steel Grade 1.4529	M ⁰ _{Rk,s}	N.m	26	52	92	233	454	786	
Partial Safety Factor	Y _{Ms}	[-]			1.	25			

Concrete pryout failure									
Factor k **		2							
Partial Safety Factor	y _{Ms}	1.50							

 $^{* \}textit{Galvanized rods of high strength are sensitive to hydrogen induced brittle failure}.$

^{**} K Value from TR029 Design of bonded anchors pt 5.2.3.3

USING SIKA ANCHORFIX-1 IN MASONRY

INSTALLATION PARAMETERS

Anchor Type					Anchor	rod		Internally threaded socket					
Anchor Size			M8		M8		M1	.0	M12	Ν	18	M10	M12
Internal Threaded Socket	d _{to} x l _t	[mm]	-		-		-	12:	x80	14x80	16x80		
Plastic Sleeve	Is	[mm]	85 85		,	85	8	85	85	85			
Plastic Sieeve	ds	[mm]	15	16	15	16	20	15	16	20	20		
Nominal Drill Hole Dia.	do	[mm]	15	16	15	16	20	15	16	20	20		
Cleaning Brush Dia.	d _b	[mm]	20 ±	± 1	20 ±	: 1	22 ± 1	20	± 1	22 ± 1	22 ± 1		
Drill Hole Depth	ho	[mm]			90					90			
Effective Anchoring Depth	h _{ef}	[mm]			85					80			
Clearance Hole Dia.	d _f ≤	[mm]	9 12		14	!	9	12	14				
Torque Moment	T _{inst} ≤	[Nm]	2				[Nm] 2				2		

EDGE DISTANCES AND SPACING

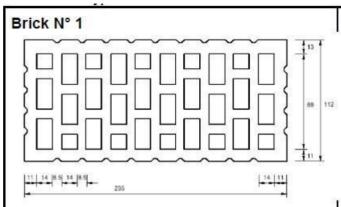
Edge distances and spacing										
Anchor rod										
	M8			M10			M12			
Base Material	Ccr=Cmin	Scr = Smin	Scr L = Smin L	Ccr=Cmin	Scr = Smin	Scr.L = Smin.L	Ccr=Cmin	Scr = Smin	Scrl = Sminl	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
Brick No 1	100	235	115	100	235	115	120	235	115	
Brick No 2	100	240	113	100	240	113	120	240	113	
Brick No 3	100	250	237	100	250	237	120	250	237	
Brick No 4	128	255	255	128	255	255	128	255	255	
Brick No 5	100	255	255	128	255	255	128	255	255	
Brick No 6	100	250	240	100	250	240	120	250	240	
Brick No 7	100	250	248	100	250	248	-	-	-	
Brick No 8	100	250	248	100	250	248	120	250	248	
Brick No 9	100	370	238	100	370	238	120	370	238	

Internal Threaded Socket									
	M8			M10			M12		
Base Material	Ca=Cmin	Scr = Smin	ScrL = SminL	Ca=Cmin	Scr = Smin	ScrL = SminL	Ca=Cmin	Scr = Smin	Scrl = Sminl
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Brick No 1	100	235	115	120	235	115	120	235	115
Brick No 2	100	240	113	120	240	113	120	240	113
Brick No 3	-	-	-	120	250	237	120	250	237
Brick No 4	128	255	255	128	255	255	128	255	255
Brick No 5	100	255	255	128	255	255	128	255	255
Brick No 6	100	250	240	120	250	240	120	250	240
Brick No 7	100	250	248	120	250	248	120	250	248
Brick No 8	-	-	-	120	250	248	120	250	248
Brick No 9	100	370	238	120	370	238	120	370	238

CHARACTERISTIC RESISTANCE

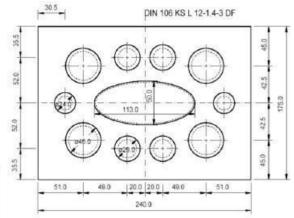
Characteristic resistance under tension and shear loading									
		Anchor Rods							
	M8	M10	M12						
Base Material	N _{RK} =V _{RK} [KN] ¹⁾	$N_{RK}=V_{RK}$ $[KN]^{1)}$	N _{RK} =V _{RK} [KN] ¹⁾						
Brick No 1	2.5	2.0	2.0						
Brick No 2	0.75	1.2	0.50						
Brick No 3	0.75	1.2	0.50						
Brick No 4	1.50	1.5	3.0						
Brick No 5	0.75	0.90	1.5						
Brick No 6	1.2	1.2	0.90						
Brick No 7	0.60	0.30	-						
Brick No 8	0.60	1.5	1.2						
Brick No 9	2.5	1.5	2.5						

¹⁾ For design according ETAG 029, Annex C: NRk = NRk,p= NRk,b = NRk,s; NRk,pb according to ETAG 029, Annex C For VRk,s see Annex C1,
Table C2; Calculation of VRk,pb and VRk,c according to ETAG 029, Annex C

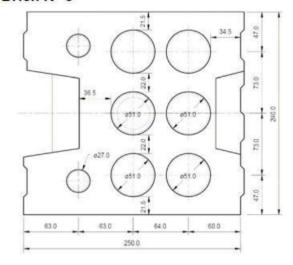

Characteristic Bending Moment								
	Anchor Diameter							
	M8	M10	M12					
Steel Grade	M _{Rk,s} [Nm]	M _{Rk,s} [Nm]	M _{Rk,s} [Nm]					
Steel Grade 5.8	19	37	66					
Steel Grade 8.8	30	60	105					
Steel Grade 10.9*	37	75	131					
Stainless Steel A2-70, A4-70	26	52	92					
Stainless Steel A4-80	30	60	105					
Stainless Steel 1.4529 strength class 70	26	52	92					
Stainless Steel 1.4565 strength class 70	26	52	92					

Displacements under tension and shear load									
Base Material	Material F $\delta N0$ $\delta N \infty$ $\delta V0$ $\delta V \infty$ δV								
Solid Bricks		0.6	1.2	1.0 1)	1.5 1)				
Perforated & Hollow Bricks	N _{Rk} /(1.4 · γ _M)	0.14	0.28	1.0 1)	1.5 ¹⁾				

¹⁾ the hole gap between bolt and fixture shall be considered additionally


β - Factors for Job Site Test According to TR053									
Brick No.	No 1	No 2	No 3	No 4	No 5	No 6	No 7	No.8	No.9
β - Factor	0.62	0.28	0.22	0.48	0.26	0.43	0.42	0.36	0.60

TYPES AND DIMENSIONS OF BRICKS AND BLOCKS

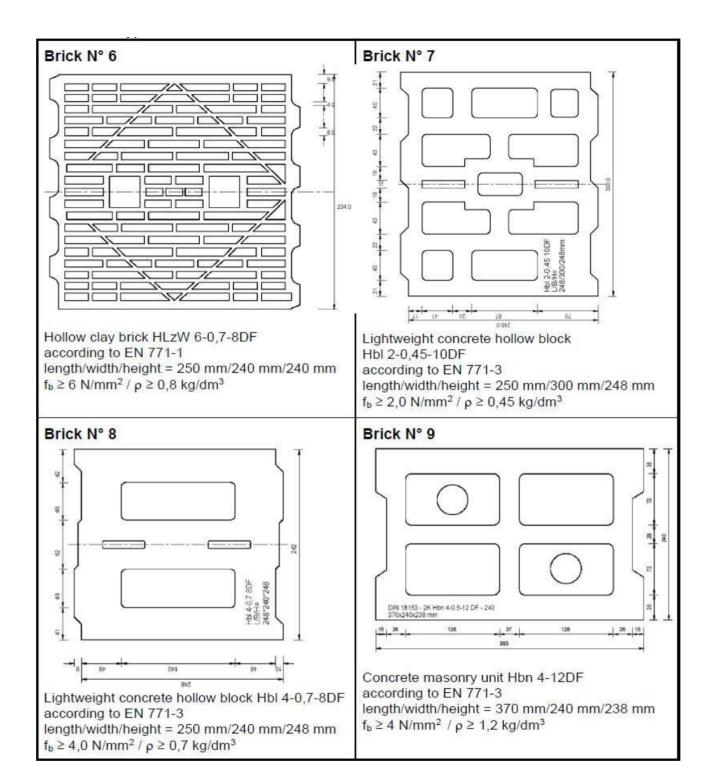

Hollow clay brick HLz 12-1,0-2DF according to EN 771-1 length/width/height = 235 mm/112 mm/115 mm $f_b \geq$ 12 N/mm² / $\rho \geq$ 1,0 kg/dm³

Brick N° 2

Hollow sand lime brick KSL 12-1,4-3DF according to EN 771-2 length/width/height = 240 mm/175 mm/113 mm $f_b \ge 12 \text{ N/mm}^2 / \rho \ge 1,4 \text{ kg/dm}^3$

Brick N° 3

Hollow sand lime brick KSL 12-1,4-8DF according to EN 771-2 length/width/height = 250 mm/240 mm/237 mm $f_b \geq$ 12 N/mm²/ $\rho \geq$ 1,4 kg/dm³


Brick N° 4

Solid clay brick Mz 12-2,0-NF according to EN 771-1 length/width/height = 240 mm/116 mm/71 mm $f_b \ge 12 \text{ N/mm}^2 \text{ / } \rho \ge 2,0 \text{ kg/dm}^3$

Brick N° 5

Solid sand lime brick KS 12-2,0-NF according to EN 771-2 length/width/height = 240 mm/115 mm/70 mm $f_b \geq$ 12 N/mm² / $\rho \geq$ 2,0 kg/dm³

IMPORTANT NOTES

Use in Porous Substrates

This bonded anchor is not intended for use as a cosmetic or decorative product. When anchoring into porous or reconstituted stone. it is recommended that technical assistance is sought. Due to the nature of the product, migration of the monomer in the resin may cause staining in certain materials. If you are still uncertain, it is advisable to test the resin by applying it in a small, discrete area and testing before using the resin on the project.

Important Note

Whilst all reasonable care is taken in compiling technical data on the Company's products, all recommendations or suggestions regarding the use of such products are made without guarantee, since the conditions of use are beyond the control of the Company. It is the customer's responsibility to satisfy themself that each product is fit for the purpose for which they intend to use it, that the actual conditions of use are suitable and that, in the light of our continual research and development programme, the information relating to each product has not been superseded.

Technical Documentation

Sika AnchorFix-1 11 2025, 03 870 43 01

