Technical Documentation Sika AnchorFix®-2+

Product Information

Sika Limited

TABLE OF CONTENTS

Sika AnchorFix®-2+	3
Installation Parameters of Threaded Bars	5
Installation Parameters of Reinforcing Bars Used as Anchors	5
Steel Failure Information - Threaded Bars	7
Using Sika AnchorFix®-2+ with Threaded Bars	8
Tension load calculations for combined concrete cone & pullout failure at various embedment depths	8
Tension load calculations for combined concrete cone & pullout failure at 8d embedment depth	9
Tension load calculations for combined concrete cone & pullout failure at std embedment depth	11
Tension load calculations for combined concrete cone & pullout failure at 20d embedment depth	13
Using Sika AnchorFix®-2+ with Threaded Bars	15
Tension load calculations for combined concrete cone & pullout failure at various embedment depths	15
Tension load calculations for combined concrete cone & pullout failure at std embedment depth	18
Tension load calculations for combined concrete cone & pullout failure at 20d embedment depth	20
Using Sika AnchorFix®-2+ with Reinforcing Bars	21
Tension load calculations for combined concrete cone & pullout failure at various embedment depths	22
Tension load calculations for combined concrete cone & pullout failure at 8d embedment depth	23
Tension load calculations for combined concrete cone & pullout failure at std embedment depth	25
Tension load calculations for combined concrete cone & pullout failure at 20d embedment depth	27
Using Sika AnchorFix®-2+ With Post-installed Rebar Connections	29
Design Bond Strength Values	29
Important Notes	30

SIKA ANCHORFIX®-2+

Chemical Resistance

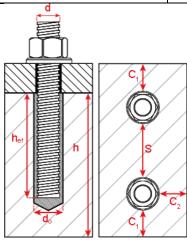
The chemical mortar has undergone extensive chemical resistance testing. The results are summarised in the table below (continued overleaf).

Chemical Environment	Concentration	Result
Aqueous Solution Acetic Acid	10%	✓
Acetone	100%	×
Aqueous Solution Aluminium Chloride	Saturated	✓
Aqueous Solution Aluminium Nitrate	10%	✓
Ammonia Solution	5%	✓
Jet Fuel	100%	✓
Benzene	100%	×
Benzoic Acid	Saturated	✓
Benzyl Alcohol	100%	×
Sodium Hypochlorite Solution	5 - 15%	С
Butyl Alcohol	100%	С
Calcium Sulphate Aqueous Solution	Saturated	✓
Carbon Monoxide	Gas	✓
Carbon Tetrachloride	100%	✓
Chlorine Water	Saturated	✓
Chloro Benzene	100%	×
Citric Acid Aqueous Solution	Saturated	✓
Cyclohexanol	100%	✓
Diesel Fuel	100%	✓
Diethylene Glycol	100%	✓
Ethanol	95%	С
Ethanol Aqueous Solution	20%	С
Heptane	100%	✓
Hexane	100%	С
	10%	✓
Hydrochloric Acid	15%	✓
	25%	С
Hydrogen Sulphide Gas	100%	✓
Isoproyl Alcohol	100%	С
Linseed Oil	100%	\checkmark
Lubricating Oil	100%	✓
Mineral Oil	100%	√
Paraffin / Kerosene (Domestic)	100%	✓
Phenol Aqueous Solution	1%	×
Phosphoric Acid	50%	✓
Potassium Hydroxide	10% / pH13	С
Sea Water	100%	✓
Styrene	100%	×
Sulphur Dioxide Solution	10%	✓
Sulphur Dioxide (40°C)	5%	✓

Technical DocumentationSika AnchorFix-2+

11, 2025, 01 870 43 12

Sulphuria Acid	10%	✓
Sulphuric Acid	50%	✓
Turpentine	100%	С
White Spirit	100%	✓
Xylene	100%	×


^{✓ =} Resistant to 75°C with at least 80% of physical properties retained.

C = Contact only to a maximum of 25°C.

x = Not Resistant

INSTALLATION PARAMETERS OF THREADED BARS

Size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	Ød ₀	[mm]	10	12	14	18	22	26	30	35
Diameter of cleaning brush d _b	d _b	[mm]	14	14	20	20	29	29	40	40
Torque moment T _{inst}	T _{inst}	[Nm]	10	20	40	80	150	200	240	275
h _{ef,min} = 8d										
Depth of drill hole h ₀	h ₀	[mm]	64	80	96	128	160	192	216	240
Minimum edge distance c _{min}	C _{min}	[mm]	35	40	50	65	80	96	110	120
Minimum spacing s _{min}	S _{min}	[mm]	35	40	50	65	80	96	110	120
Minimum thickness of member h _{min}	h _{min}	[mm]	h _{ef} -	+ 30 mm	n ≥ 100	mm		h _{ef} -	+ 2d₀	
h _{ef,max} = 20d										
Depth of drill hole h ₀	h ₀	[mm]	160	200	240	320	400	480	540	600
Minimum edge distance c _{min}	C _{min}	[mm]	80	100	120	160	200	240	270	300
Minimum spacing s _{min}	S _{min}	[mm]	80	100	120	160	200	240	270	300
Minimum thickness of member h _{min}	h _{min}	[mm]	h _{ef} -	+ 30 mm	n ≥ 100	mm		h _{ef} +	+ 2d ₀	

INSTALLATION PARAMETERS OF REINFORCING BARS USED AS ANCHORS

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Nominal drill hole diameter	Ød ₀	[mm]	12	14	16	20	25	32	40
Diameter of cleaning brush d₀	d _b	[mm]	14	14	19	22	29	40	42
h _{ef,min} = 8d									
Depth of drill hole h ₀	h ₀	[mm]	64	80	96	128	160	200	256
Minimum edge distance c _{min}	C _{min}	[mm]	35	40	50	65	80	100	130
Minimum spacing s _{min}	S _{min}	[mm]	35	40	50	65	80	100	130

Technical Documentation

Sika AnchorFix-2+

11, 2025, 01

Minimum thickness of member h _{min}	h _{min}	[mm]	h _{ef}	+ 30 mm	n ≥ 100 r	nm		h _{ef} + 2d ₀	
h _{ef,max} = 20d									
Depth of drill hole h ₀	h ₀	[mm]	160	200	240	400	500	640	
Minimum edge distance c _{min}	C _{min}	[mm]	80	100	120	160	200	250	320
Minimum spacing s _{min}	S _{min}	[mm]	80	100	120	160	200	250	320
Minimum thickness of member h _{min}	h _{min}	[mm]	$h_{ef} + 30 \text{ mm} \ge 100 \text{ mm}$ $h_{ef} + 2d_0$						١

STEEL FAILURE INFORMATION - THREADED BARS

Characteristic resistance values to tension load

Steel Failure - Characteristic resistance										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Partial safet y factor	γMs	[-]		2						
Steel grade 5.8	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γMs	[-]		1.5						
Steel grade 8.8	N _{Rk,s}	[kN]	29	29 46 67 126 196 282 3				367	449	
Partial safety factor	γMs	[-]				1	.5			
Steel grade 10.9	$N_{Rk,s}$	[kN]	37	58	84	157	245	353	459	561
Partial safety factor	γMs	[-]				1	.4			
Stainless steel grade A4-70	N _{Rk,s}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1	.9			
Stainless steel grade A4-80	N _{Rk,s}	[kN]	29	29 46 67 126 196 282 3					367	449
Partial safety factor	γMs	[-]	1.6							
Stainless steel grade 1.4529	N _{Rk,s}	[kN]	26	41	59	110	172	247	321	393

Characteristic resistance values to shear load

Steel Failure - Without lever arm										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
Partial safety factor	γms	[-]				1.	67			
Steel grade 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Partial safety factor	γMs	[-]				1.	25			
Steel grade 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γms	[-]				1.	25			
Steel grade 10.9	$V_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γms	[-]				1	.5			
Stainless steel grade A4-70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196
Partial safety factor	γms	[-]				1.	56			
Stainless steel grade A4-80	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γms	[-]		1.33						
Stainless steel grade 1.4529	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	161	196
Partial safety factor	γms	[-]	1.25							

Steel Failure - With lever arm										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.8	$V_{Rk,s}$	[kN]	15	30	52	133	260	449	666	900
Partial safety factor	γMs	[-]				1.	67			
Steel grade 5.8	$V_{Rk,s}$	[kN]	19	37	66	166	325	561	832	1125
Partial safety factor	γMs	[-]				1.	25			
Steel grade 8.8	$V_{Rk,s}$	[kN]	30	60	105	266	519	898	1332	1799
Partial safety factor	γMs	[-]				1.	25			
Steel grade 10.9	$V_{Rk,s}$	[kN]	37	75	131	333	649	1123	1664	2249
Partial safety factor	γMs	[-]				1.	50			
Stainless steel grade A4-70	$V_{Rk,s}$	[kN]	26	52	92	233	454	786	1165	1574
Partial safety factor	γMs	[-]				1.	56			

Technical Documentation

Sika AnchorFix-2+

11, 2025, 01

870 43 12

BUILDING TRUST

Stainless steel grade A4-80	$V_{Rk,s}$	[kN]	30	60	105	266	519	898	1332	1799
Partial safety factor	γMs	[-]	1.33							
Stainless steel grade 1.4529	$V_{Rk,s}$	[kN]	26 52 92 233 454 786 1165 1						1574	
Partial safety factor	γMs	[-]	1.25							
Concrete pryout failure										
Factor k from TR 029 Design of bonded anchors pt 5.2.3.3			2							
Partial safety factor	γMs	[-]				1	.5			

USING SIKA ANCHORFIX®-2+ WITH THREADED BARS

Combined pullout and concrete cone failure in non-cracked concrete C20/25

Size			M8	M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistance in non-cracked concrete										
Characteristic bond resistance dry/wet concrete	$ au_{ ext{Rk}}$	[N/mm²]	11	10	9.5	9.0	8.5	8.0	6.5	5.5
Partial safety factor	γмс	[-]			1	.8			2	.1

TENSION LOAD CALCULATIONS FOR COMBINED CONCRETE CONE & PULLOUT FAILURE AT VARIOUS EMBEDMENT DEPTHS

Using threaded rods in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +80°C.

Danasak.	Comple el	l laite				Anch	or Size			
Property	Symbol	Unit	M8	M10	M12	M16	M20	M24	M27	M30
Effective Embedment Depth = 8d	h _{ef}	mm	64	80	96	128	160	192	216	240
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	17.69	25.13	34.38	57.91	85.45	115.81	119.09	124.41
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10
Effective Embedment Depth = 10d	h _{ef}	mm	80	100	120	160	200	240	270	300
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	22.12	31.42	42.98	72.38	106.81	144.76	148.86	155.51
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10
Effective Embedment Depth = STD	h _{ef}	mm	80	90	110	128	170	210	270	300
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	22.12	28.27	39.40	57.91	90.79	126.67	148.86	155.51
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10
Effective Embedment Depth = 12d	h _{ef}	mm	96	120	144	192	240	288	324	360
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	26.54	37.70	51.57	86.86	128.18	173.72	178.64	186.61
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10
Effective Embedment Depth = 14d	h _{ef}	mm	112	140	168	224	280	336	378	420
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	30.96	43.98	60.17	101.34	149.54	202.67	208.41	217.71
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10
Effective Embedment Depth = 16d	h _{ef}	mm	128	160	192	256	320	384	432	480
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	35.39	50.27	68.76	115.81	170.90	231.62	238.18	248.81
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10
Effective Embedment Depth = 18d	h _{ef}	mm	144	180	216	288	360	432	486	540

Technical DocumentationSika AnchorFix-2+
11, 2025, 01

Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	39.81	56.55	77.36	130.29	192.27	260.58	267.96	279.92
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10
Effective Embedment Depth = 20d	h _{ef}	mm	160	200	240	320	400	480	540	600
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ^o _{Rk,p}	kN	44.23	62.83	85.95	144.76	213.63	289.53	297.73	311.02
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10

Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

TENSION LOAD CALCULATIONS FOR COMBINED CONCRETE CONE & PULLOUT FAILURE AT 8D EMBEDMENT DEPTH

Using threaded rods in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +80°C.

Property	Symbol	Unit				Ancho	nor Size				
. ,	,		M8	M10	M12	M16	M20	M24	M27	M30	
Nominal Anchor Diameter	d	mm	8	10	12	16	20	24	27	30	
Characteristic Bond Strength	TRK	N/mm²	11.00	10.00	9.50	9.00	8.50	8.00	6.50	5.50	
Effective Embedment Depth	h _{ef}	mm	64	80	96	128	160	192	216	240	
Characteristic Load (Combined Concrete Cone and Pullout Failure)	N ⁰ _{Rk,p}	kN	17.69	25.13	34.38	57.91	85.45	115.81	119.09	124.41	
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10	
Characteristic Anchor Spacing (Splitting Failure)	$S_{cr,sp}$	mm	192	240	288	384	480	576	648	720	
Characteristic Edge Distance (Splitting Failure)	C _{cr,sp}	mm	96	120	144	192	240	288	324	360	
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	192	231	270	351	426	496	503	514	
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	$C_{cr,Np}$	mm	96	115	135	175	213	248	251	257	

Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

9/30

^{2.} Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.

^{3.} Tabulated values are valid for temperature range -40°C to +80°C (Max LTT = +50°C; Max STT = +80°C).

^{4.} Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

^{5.} Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

^{6.} The compressive strength of the concrete (fck,cube) is assumed to be 25 N/mm2 for C20/25 concrete.

^{7.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

 $^{{}^{2\}cdot} \textit{ Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.}$

^{3.} Tabulated values are valid for temperature range -40°C to +80°C (Max LTT = +50°C; Max STT = +80°C).

^{4.} Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

^{5.} Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

 $^{^{6.}}$ The compressive strength of the concrete (fck,cube) is assumed to be 25 N/mm2 for C20/25 concrete.

 $^{^{7.}}$ Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Combined concrete cone and pullout failure

	\setminus								
-	\times				Ancho	or Size			
1 1	`	M8	M10	M12	M16	M20	M24	M27	M30
	35	0.55							
	40	0.58	0.54						
	50	0.65	0.59	0.56					
	60	0.72	0.65	0.60					
	65	0.76	0.68	0.63	0.56				
	70	0.79	0.71	0.65	0.57				
	80	0.87	0.77	0.70	0.61	0.56			
	90	0.95	0.83	0.75	0.65	0.59			
m)	96	N/R	0.87	0.78	0.67	0.61	0.57		
Close Edge Distance, C (mm)	100		0.90	0.80	0.68	0.62	0.58		
e, C	110		0.96	0.86	0.72	0.65	0.60	0.60	
ınce	115		N/R	0.88	0.74	0.66	0.61	0.61	
iste	120			0.91	0.76	0.68	0.63	0.62	0.62
G e	130			0.97	0.80	0.71	0.65	0.65	0.64
gp	135			N/R	0.82	0.73	0.67	0.66	0.65
e E	140				0.85	0.74	0.68	0.68	0.67
Slos	150				0.89	0.78	0.71	0.70	0.69
	160				0.93	0.81	0.74	0.73	0.72
	170				0.98	0.84	0.76	0.76	0.75
	175				N/R	0.86	0.78	0.77	0.76
	180					0.88	0.79	0.78	0.77
	190					0.92	0.82	0.81	0.80
	200					0.95	0.85	0.84	0.83
	213					N/R	0.89	0.88	0.87
	220						0.91	0.90	0.89
	240						0.97	0.96	0.95
	248						N/R	0.99	0.97
	251							N/R	0.98
	257								N/R

Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

Reduction factors for anchor spacing:

	\times				Ancho	or Size			
,		M8	M10	M12	M16	M20	M24	M27	M30
	35	0.65							
	40	0.66	0.65						
	50	0.69	0.66	0.65					
	60	0.71	0.68	0.66					
	65	0.72	0.69	0.67	0.63				
	70	0.73	0.70	0.68	0.64				
Ē	80	0.75	0.72	0.69	0.65	0.63			
m.	90	0.78	0.74	0.71	0.67	0.64			
Anchor Spacing Distance, S (mm)	96	0.79	0.75	0.72	0.67	0.64	0.62		
nce	100	0.80	0.76	0.73	0.68	0.65	0.63		
sta	110	0.82	0.78	0.74	0.69	0.66	0.64	0.66	
Ö	120	0.84	0.80	0.76	0.70	0.67	0.65	0.67	0.68
ing	150	0.91	0.85	0.81	0.74	0.70	0.67	0.69	0.70
рас	192	N/R	0.93	0.88	0.80	0.75	0.71	0.73	0.74
r S	200		0.94	0.89	0.81	0.76	0.72	0.74	0.74
chc	231		N/R	0.94	0.85	0.79	0.75	0.76	0.77
An	250			0.97	0.87	0.81	0.77	0.78	0.79
	270			N/R	0.90	0.83	0.79	0.80	0.80
	300				0.94	0.87	0.82	0.83	0.83
	351				N/R	0.92	0.86	0.87	0.87
	400					0.97	0.91	0.91	0.91
	426					N/R	0.94	0.93	0.93
	450						0.96	0.96	0.95
	496						N/R	0.99	0.99
	503							N/R	0.99
	514								N/R

^{1.} Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.

Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.

Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

^{4.} Interpolation is allowed.

^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

^{6.} Close edge distances must exceed or be equal to the minimum close edge distance (Cmin) as defined in the ETA.

²⁻ Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and "Scr, Np" but without close edge considerations.

[&]quot;Scr, Np" but without close edge considerations.

3. Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.

^{4.} Interpolation is allowed.

^{5.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid solittina failure.

to avoid splitting failure. 6 - Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the ETA.

TENSION LOAD CALCULATIONS FOR COMBINED CONCRETE CONE & PULLOUT FAILURE AT STD EMBEDMENT DEPTH

Using threaded rods in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +80°C.

Property	Symbol	Unit	Anchor Size								
' '	,		M8	M10	M12	M16	M20	M24	M27	M30	
Nominal Anchor Diameter	d	mm	8	10	12	16	20	24	27	30	
Characteristic Bond Strength	TRK	N/mm ²	11.00	10.00	9.50	9.00	8.50	8.00	6.50	5.50	
Effective Embedment Depth	h _{ef}	mm	80	90	110	128	170	210	270	300	
Characteristic Load (Combined Concrete Cone and Pullout Failure)	N ⁰ _{Rk,p}	kN	22.12	28.27	39.40	57.91	90.79	126.67	148.86	155.51	
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10	
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	240	270	330	384	510	630	810	900	
Characteristic Edge Distance (Splitting Failure)	C _{cr,sp}	mm	120	135	165	192	255	315	405	450	
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	194	231	270	351	426	496	503	514	
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	$C_{cr,Np}$	mm	97	115	135	175	213	248	251	257	

^{1.} Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well 02

Combined concrete cone and pullout failure

			2 00110	<u> </u>		or Size			
	$/ \setminus$	M8	M10	M12	M16	M20	M24	M27	M30
	40	0.58							
	45	0.61	0.57						
	50	0.65	0.59	0.56					
	55	0.68	0.62	0.58					
	60	0.72	0.65	0.60	0.54				
<u>~</u>	65	0.75	0.68	0.63	0.56				
Ē	70	0.79	0.71	0.65	0.57	0.53			
C	80	0.87	0.77	0.70	0.61	0.56			
ce,	85	0.90	0.80	0.72	0.63	0.57			
tan	90	0.94	0.83	0.75	0.65	0.59	0.55		
Close Edge Distance, C (mm)	97	N/R	0.88	0.79	0.67	0.61	0.57		
ge	100		0.90	0.80	0.68	0.62	0.58		
Ed	105		0.93	0.83	0.70	0.63	0.59		
se	115		N/R	0.88	0.74	0.66	0.61		
ö	135			N/R	0.82	0.73	0.67	0.66	
	150				0.89	0.78	0.71	0.70	0.69
	175				N/R	0.86	0.78	0.77	0.76
	200					0.95	0.85	0.84	0.83
	213					N/R	0.89	0.88	0.87
	225						0.93	0.92	0.90
	248						N/R	0.99	0.97
	251							N/R	0.98
	257								N/R

- 1. Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.
- ² Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.
- 3 Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- 4. Interpolation is allowed.
- 5. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.
- 6 Close edge distances must exceed or be equal to the minimum close edge distance (C_{min}) as defined in the ETA.

Reduction factors for anchor spacing:

ומוווטג	neu cc	ncret	cone	anu p	ullout	ianure			
					Ancho	or Size			
	$/\setminus$	M8	M10	M12	M16	M20	M24	M27	M30
	40	0.67							
	45	0.68	0.66						
	50	0.70	0.67						
	55	0.71	0.68	0.66					
	60	0.72	0.69	0.67					
	65	0.73	0.70	0.68	0.63				
	70	0.74	0.71	0.69	0.64				
_	80	0.76	0.73	0.70	0.65				
E	85	0.77	0.74	0.71	0.66	0.64			
Anchor Spacing Distance, S (mm)	90	0.78	0.75	0.72	0.67	0.64			
e)	100	0.80	0.76	0.73	0.68	0.65			
auc	105	0.81	0.77	0.74	0.69	0.66	0.64		
Oist	120	0.85	0.80	0.77	0.70	0.67	0.65		
<u> </u>	135	0.88	0.83	0.79	0.72	0.69	0.67	0.69	
aci	140	0.89	0.84	0.80	0.73	0.70	0.67	0.70	
Spi	150	0.91	0.86	0.81	0.74	0.71	0.68	0.70	0.71
آو	194	N/R	0.93	0.88	0.80	0.75	0.72	0.74	0.75
nc	200		0.95	0.89	0.81	0.76	0.73	0.75	0.75
⋖	231		N/R	0.94	0.85	0.79	0.76	0.77	0.78
	250			0.97	0.87	0.81	0.77	0.79	0.79
	270			N/R	0.90	0.84	0.79	0.81	0.81
	300				0.94	0.87	0.82	0.83	0.83
	351				N/R	0.92	0.87	88.0	0.87
	400					0.97	0.91	0.92	0.91
	426					N/R	0.94	0.94	0.93
	450						0.96	0.96	0.95
	496						N/R	0.99	0.99
	503							N/R	0.99
	514								N/R

- 1. Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.
- 2 Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and "S_{cr,Np}" but without close edge considerations.
- 3. Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- 4. Interpolation is allowed.
- 5 Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.
- Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the ETA.

TENSION LOAD CALCULATIONS FOR COMBINED CONCRETE CONE & PULLOUT FAILURE AT 20D EMBEDMENT DEPTH

Using threaded rods in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +80°C.

Property	Symbol	Unit	Anchor Size								
17-17	,		M8	M10	M12	M16	M20	M24	M27	M30	
Nominal Anchor Diameter	d	mm	8	10	12	16	20	24	27	30	
Characteristic Bond Strength	TRK	N/mm²	11.00	10.00	9.50	9.00	8.50	8.00	6.50	5.50	
Effective Embedment Depth	h _{ef}	mm	160	200	240	320	400	480	540	600	
Characteristic Load (Combined Concrete Cone and Pullout Failure)	N ⁰ _{Rk,p}	kN	44.23	62.83	85.95	144.76	213.63	289.53	297.73	311.02	
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	2.10	2.10	
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	480	600	720	960	1200	1440	1620	1800	
Characteristic Edge Distance (Splitting Failure)	C _{cr,sp}	mm	240	300	360	480	600	720	810	900	
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	194	231	270	351	426	496	503	514	
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	C _{cr,Np}	mm	97	115	135	175	213	248	251	257	

Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

BUILDING TRUST

^{2.} Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.

^{3.} Tabulated values are valid for temperature range -40°C to +80°C (Max LTT = +50°C; Max STT = +80°C).

⁴⁻ Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

^{5.} Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

 $^{^{\}it 6.}$ The compressive strength of the concrete (fck,cube) is assumed to be 25 N/mm2 for C20/25 concrete.

 $^{^{7.}}$ Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Combined concrete cone and pullout failure

				шр	Ancho				
		M8	M10	M12	M16	M20	M24	M27	M30
	80	0.87							
	90	0.94							
	97	N/R							
	100		0.90						
	115		N/R						
	120			0.91					
	130			0.97					
E (E	135			N/R					
Close Edge Distance, C (mm)	140								
), c	150								
nce	160				0.93				
ista	170				0.98				
е О е	175				N/R				
gp	180								
ë	190								
SOI	200					0.95			
	213					N/R			
	220								
	240						0.97		
	248						N/R		
	251								
	257								
	260								
	270							N/R	
	280								
	300								N/R

- Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.
- Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.
- 3. Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- 4. Interpolation is allowed.
- 5. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.
- Close edge distances must exceed or be equal to the minimum close edge distance (Cmin) as defined in the ETA.

Reduction factors for anchor spacing:

	\searrow					or Size			
	/	M8	M10	M12	M16	M20	M24	M27	M30
	80	0.78							
	90	0.80							
	100	0.82	0.79						
	120	0.86	0.82	0.79					
	140	0.90	0.86	0.82					
ш	160	0.94	0.89	0.85	0.79				
s (n	180	0.97	0.92	0.88	0.81				
, ,	194	N/R	0.94	0.90	0.83				
anc	200		0.95	0.90	0.84	0.79			
ist	220		0.98	0.93	0.86	0.81			
] g	231		N/R	0.95	0.87	0.82			
Anchor Spacing Distance, S (mm)	240			0.96	0.88	0.83	0.80		
Spa	260			0.99	0.90	0.85	0.81		
Jor	270			N/R	0.91	0.86	0.82	0.83	
nch	280				0.92	0.87	0.83	0.83	
⋖	300				0.95	0.89	0.85	0.85	0.85
	351				N/R	0.93	0.89	0.89	0.89
	400					0.98	0.93	0.92	0.92
	426					N/R	0.95	0.94	0.94
	450						0.96	0.96	0.96
	496						N/R	0.99	0.99
	503							N/R	0.99
	514							,	N/R

- 1. Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.
- ² Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and " $S_{C,Np}$ " but without close edge considerations.
- 3 Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- 4. Interpolation is allowed.
- Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.
- Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the ETA.

USING SIKA ANCHORFIX®-2+ WITH THREADED BARS

Combined pullout and concrete cone failure cracked concrete C20/25

Size			M10	M12	M16	M20	M24
Characteristic bond resistance in cracked concrete							
Characteristic bond resistance dry/wet concrete	Trk	[N/mm²]	5.0	5.0	5.0	4.5	4.5
Partial safety factor	γмс	[-]			1.8		

TENSION LOAD CALCULATIONS FOR COMBINED CONCRETE CONE & PULLOUT FAILURE AT VARIOUS EMBEDMENT DEPTHS

Using threaded rods in dry / wet, cracked, C20/25 concrete. Temperature range -40°C to +80°C.

osing threaded roas in dry / wet, tracked, tee/25 tor	ici ctc. remp		ugc	10 C L	0 .00	<u> </u>			
Property	Symbol	Unit	Anchor Size						
rioperty	Symbol	Offic	M10	M12	M16	M20	M24		
Effective Embedment Depth = 8d	h _{ef}	mm	80	96	128	160	192		
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	12.57	18.10	32.17	45.24	65.14		
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80		
Effective Embedment Depth = 10d	h _{ef}	mm	100	120	160	200	240		
Characteristic Load (Combined Concrete Cone & Pullout Failure)	$N^0_{Rk,p}$	kN	15.71	22.62	40.21	56.55	81.43		
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80		
Effective Embedment Depth = STD	h _{ef}	mm	90	110	128	170	210		
Characteristic Load (Combined Concrete Cone & Pullout Failure)	$N^0_{Rk,p}$	kN	14.14	20.73	32.17	48.07	71.25		
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80		
Effective Embedment Depth = 12d	h _{ef}	mm	120	144	192	240	288		
Characteristic Load (Combined Concrete Cone & Pullout Failure)	$N^0_{Rk,p}$	kN	18.85	27.14	48.25	67.86	97.72		
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80		
Effective Embedment Depth = 14d	h _{ef}	mm	140	168	224	280	336		
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	21.99	31.67	56.30	79.17	114.00		
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80		
Effective Embedment Depth = 16d	h _{ef}	mm	160	192	256	320	384		
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	25.13	36.19	64.34	90.48	130.29		
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80		
Effective Embedment Depth = 18d	h _{ef}	mm	180	216	288	360	432		
Characteristic Load (Combined Concrete Cone & Pullout Failure)	$N^0_{Rk,p}$	kN	28.27	40.72	72.38	101.79	146.57		
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80		
Effective Embedment Depth = 20d	h _{ef}	mm	200	240	320	400	480		
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	31.42	45.24	80.42	113.10	162.86		
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80		

Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

Technical Documentation

Sika AnchorFix-2+

11, 2025, 01

² Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.

 $^{^{3.}}$ Tabulated values are valid for temperature range -40°C to +80°C (Max LTT = +50°C; Max STT = +80°C).

^{4.} Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

^{5.} Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

^{6.} The compressive strength of the concrete (fck,cube) is assumed to be 25 N/mm2 for C20/25 concrete.

^{7.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

TENSION LOAD CALCULATIONS FOR COMBINED CONCRETE CONE & PULLOUT FAILURE AT 8D EMBEDMENT DEPTH

Using threaded rods in dry / wet, cracked, C20/25 concrete. Temperature range -40°C to +80°C.

			0						
Property	Symbol	Unit	Anchor Size						
			M10	M12	M16	M20	M24		
Nominal Anchor Diameter	d	mm	10	12	16	20	24		
Characteristic Bond Strength	$ au_{ ext{Rk}}$	N/mm²	5.00	5.00	5.00	4.50	4.50		
Effective Embedment Depth	h _{ef}	mm	80	96	128	160	192		
Characteristic Load (Combined Concrete Cone and Pullout Failure)	N ⁰ _{Rk,p}	kN	12.57	18.10	32.17	45.24	65.14		
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80		
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	240	288	384	480	576		
Characteristic Edge Distance (Splitting Failure)	C _{cr,sp}	mm	120	144	192	240	288		
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	163	196	261	310	372		
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	C _{cr,Np}	mm	82	98	131	155	186		

Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

^{2.} Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.

^{3.} Tabulated values are valid for temperature range -40°C to +80°C (Max LTT = +50°C; Max STT = +80°C).

^{4.} Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

^{5.} Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

 $^{^{\}rm 6.}$ The compressive strength of the concrete (fck,cube) is assumed to be 25 N/mm2 for C20/25 concrete.

 $^{^{7.}\} Tabulated\ values\ assume\ that\ the\ geometry\ of\ the\ anchor(s)\ and\ concrete\ member\ is\ sufficient\ to\ avoid\ splitting\ failure.$

Combined concrete cone and pullout failure

				Anchor Siz		
		M10	M12	M16	M20	M24
	40	0.63				
	50	0.71	0.64			
	60	0.80	0.71			
	65	0.84	0.75	0.64		
	70	0.89	0.78	0.66		
	80	0.98	0.86	0.71	0.65	
	90	N/R	0.87	0.72	0.66	
	96		0.94	0.77	0.69	0.65
Close Edge Distance, C (mm)	100		0.98	0.80	0.72	0.66
<u>E</u>	110		N/R	0.81	0.73	0.66
o)	115			0.82	0.74	0.70
ŭ	120			0.88	0.78	0.74
ista	130			0.94	0.83	0.78
е D	135			N/R	0.88	0.81
9	140				0.92	0.85
e E	150				0.97	0.87
ě	160				N/R	0.89
	170					0.93
	175					0.97
	180					N/R
	190					
	200					
	213					
	220					
	240					
	248					
	251					
	257					

- Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.
- Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.
- 3. Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- ^{4.} Interpolation is allowed.
- 5. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.
- 6. Close edge distances must exceed or be equal to the minimum close edge distance (Cmin) as defined in the ETA.

Reduction factors for anchor spacing:

Combined concrete cone and pullout failure

			- 2	panoat		
			4	nchor Siz	e	
	$/\setminus$	M10	M12	M16	M20	M24
	40	0.71				
	50	0.73	0.71			
	60	0.76	0.73			
	65	0.77	0.74	0.69		
	70	0.78	0.75	0.70		
	80	0.81	0.77	0.72	0.69	
Ē	90	0.83	0.79	0.73	0.71	
Anchor Spacing Distance, S (mm)	96	0.84	0.80	0.74	0.72	0.69
S	100	0.85	0.81	0.75	0.72	0.69
JCe	120	0.90	0.85	0.78	0.75	0.71
staı	140	0.95	0.89	0.81	0.78	0.74
Ö	160	0.99	0.93	0.84	0.80	0.76
ing	163	N/R	0.94	0.85	0.81	0.76
рас	180		0.97	0.88	0.83	0.78
r S	196		N/R	0.90	0.85	0.80
oh:	200			0.91	0.86	0.81
An	220			0.94	0.88	0.83
-	240			0.97	0.91	0.85
	261			N/R	0.94	0.88
	280				0.96	0.90
	300				0.99	0.92
	310				N/R	0.93
	320					0.94
	340					0.96
	360					0.99
	372					N/R

- 1. Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.
- 2. Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and "S_{cr,No"} but without close edge considerations.
- 3. Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- 4. Interpolation is allowed.
- 5. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.
- 6. Anchor spacing distances must exceed or be equal to the minimum anchor spacing (Smin) as defined in the ETA.

TENSION LOAD CALCULATIONS FOR COMBINED CONCRETE CONE & PULLOUT FAILURE AT STD EMBEDMENT DEPTH

Using threaded rods in dry / wet, cracked, C20/25 concrete. Temperature range -40°C to +80°C.

Property	Symbol	Unit	Anchor Size						
			M10	M12	M16	M20	M24		
Nominal Anchor Diameter	d	mm	10	12	16	20	24		
Characteristic Bond Strength	TRk	N/mm²	5.00	5.00	5.00	4.50	4.50		
Effective Embedment Depth	h _{ef}	mm	90	110	128	170	210		
Characteristic Load (Combined Concrete Cone and Pullout Failure)	N ⁰ _{Rk,p}	kN	14.14	20.73	32.17	48.07	71.25		
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80		
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	270	330	384	510	630		
Characteristic Edge Distance (Splitting Failure)	C _{cr,sp}	mm	135	165	192	255	315		
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	163	196	261	310	372		
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	C _{cr,Np}	mm	82	98	131	155	186		

^{1.} Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

 $^{^{2.}\} Characteristic\ loads\ are\ valid\ for\ single\ anchors\ without\ close\ edge,\ anchor\ spacing\ or\ eccentric\ loading\ considerations.$

^{3.} Tabulated values are valid for temperature range -40°C to +80°C (Max LTT = +50°C; Max STT = +80°C).

^{4.} Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

^{5.} Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

^{6.} The compressive strength of the concrete (fck,cube) is assumed to be 25 N/mm2 for C20/25 concrete.

 $^{^{7.}\} Tabulated\ values\ assume\ that\ the\ geometry\ of\ the\ anchor(s)\ and\ concrete\ member\ is\ sufficient\ to\ avoid\ splitting\ failure.$

Reduction factors for anchor spacing:

Combined concrete cone and pullout failure

			P	Anchor Siz	e	
	$/ \setminus$	M10	M12	M16	M20	M24
	45	0.72				
	50	0.74				
	55	0.75	0.72			
	60	0.76	0.73			
	65	0.77	0.74	0.69		
	70	0.78	0.75	0.70		
_	80	0.81	0.77	0.72		
Anchor Spacing Distance, S (mm)	90	0.83	0.79	0.73	0.71	
S (r	100	0.86	0.81	0.75	0.72	
, Se,	105	0.87	0.82	0.76	0.73	0.70
ano	120	0.90	0.85	0.78	0.75	0.72
Dist	140	0.95	0.89	0.81	0.78	0.74
] <u>g</u> (160	0.99	0.93	0.84	0.81	0.76
acir	163	N/R	0.94	0.85	0.81	0.77
Sp	180		0.97	0.88	0.83	0.79
٥	196		N/R	0.90	0.85	0.80
nct	200			0.91	0.86	0.81
⋖	220			0.94	0.88	0.83
	240			0.97	0.91	0.85
	261			N/R	0.94	0.88
	280				0.96	0.90
	300				0.99	0.92
	310				N/R	0.93
	320					0.94
	340					0.97
	360					0.99
	372					N/R

- 1. Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TRO29. All other failure modes must be considered and different reduction factors may apply.
- Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.
- 3. Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- 4. Interpolation is allowed.
- Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.
- $^{6.}$ Close edge distances must exceed or be equal to the minimum close edge distance (C_{min}) as defined in the ETA.

Reduction factors for close edge:

	led con			Anchor Siz		
		M10	M12	M16	M20	M24
	45	0.67				
	50	0.71				
	55	0.75	0.68			
	60	0.80	0.71			
	65	0.84	0.75	0.64		
_	70	0.89	0.78	0.66		
Close Edge Distance, C (mm)	80	0.98	0.86	0.71		
) C	82	N/R	0.87	0.72		
ce,	85		0.90	0.74	0.67	
tan	90		0.94	0.77	0.69	
Dis	98		N/R	0.81	0.73	
98	100			0.82	0.74	
Ed	105			0.85	0.76	0.68
ose	110			0.88	0.78	0.70
Ö	120			0.94	0.83	0.74
	131			N/R	0.88	0.78
	140				0.92	0.81
	150				0.97	0.85
	155				N/R	0.87
	160					0.89
	170					0.93
	180					0.97
	186					N/R

- Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.
- 2. Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and "S_{cr,Np}" but without close edge considerations.
- 3. Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- 4. Interpolation is allowed.
- Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.
- 6 . Anchor spacing distances must exceed or be equal to the minimum anchor spacing S_{min} as defined in the ETA.

TENSION LOAD CALCULATIONS FOR COMBINED CONCRETE CONE & PULLOUT **FAILURE AT 20D EMBEDMENT DEPTH**

Using threaded rods in dry / wet, cracked, C20/25 concrete. Temperature range -40°C to +80°C.

Property	Symbol	Unit	Anchor Size						
			M10	M12	M16	M20	M24		
Nominal Anchor Diameter	d	mm	10	12	16	20	24		
Characteristic Bond Strength	TRK	N/mm²	5.00	5.00	5.00	4.50	4.50		
Effective Embedment Depth	h _{ef}	mm	200	240	320	400	480		
Characteristic Load (Combined Concrete Cone and Pullout Failure)	N ⁰ _{Rk,p}	kN	31.42	45.24	80.42	113.10	162.86		
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80		
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	600	720	960	1200	1440		
Characteristic Edge Distance (Splitting Failure)	$C_{cr,sp}$	mm	300	360	480	600	720		
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	163	196	261	310	372		
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	$C_{cr,Np}$	mm	82	98	131	155	186		

^{1.} Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

 $^{^2. \ \} Characteristic \ loads \ are \ valid for single \ anchors \ without \ close \ edge, \ anchor \ spacing \ or \ eccentric \ loading \ considerations.$

 $^{^{3.}}$ Tabulated values are valid for temperature range -40° C to $+80^{\circ}$ C (Max LTT = $+50^{\circ}$ C; Max STT = $+80^{\circ}$ C).

⁴⁻ Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

^{5.} Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

^{6.} The compressive strength of the concrete (fck,cube) is assumed to be 25 N/mm2 for C20/25 concrete.

^{7.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Reduction factors for anchor spacing:

Combined concrete cone and pullout failure

			P	Anchor Siz	e	
		M10	M12	M16	M20	M24
	100	0.87				
	110	0.89				
	120	0.91	0.86			
	130	0.93	0.88			
	140	0.95	0.90			
E	150	0.97	0.92			
S (n	160	0.99	0.94	0.86		
Anchor Spacing Distance, S (mm)	163	N/R	0.94	0.87		
anc	170		0.96	0.88		
oist	180		0.97	0.89		
	190		0.99	0.90		
äcir	196		N/R	0.91		
Sp	200			0.92	0.87	
آور	220			0.94	0.90	
nch	240			0.97	0.92	0.87
₹	261			N/R	0.94	0.89
	280				0.97	0.91
	300				0.99	0.93
	310				N/R	0.94
	320					0.95
	340					0.97
	360					0.99
	372					N/R

- Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TRO29. All other failure modes must be considered and different reduction factors may apply.
- ^{2.} Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and " $S_{cl,Np}$ " but without close edge considerations.
- Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- 4. Interpolation is allowed.
- Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Reduction factors for close edge:

Combined concrete cone and pullout failure

			A	Anchor Siz	e	
	$/\setminus$	M10	M12	M16	M20	M24
	100	N/R				
a)	110					
dge	120		N/R			
Close Edge Distance, C	130					
los	140					
Colsta	160			N/R		
	180					
	200				N/R	
	220					
	240					N/R

- Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.
- Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.
- 3. Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- 4. Interpolation is allowed.
- 5. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.
- Close edge distances must exceed or be equal to the minimum close edge distance (Cmin) as defined in the ETA.

USING SIKA ANCHORFIX®-2+ WITH REINFORCING BARS

Combined pullout and concrete cone failure in non-cracked concrete C20/25

Size			Ø8mm	Ø10m m	Ø12m m	Ø16m m	Ø20m m	Ø25m m	Ø32m m
Characteristic bond resistance in non-cracked concrete									
Characteristic bond resistance dry/wet concrete	$ au_{ ext{Rk}}$	[N/mm²]	12	10	10	9.0	9.0	9.0	5.5
Partial safety factor	γмс	[-]				1.8			

Technical DocumentationSika AnchorFix-2+

11, 2025, 01

TENSION LOAD CALCULATIONS FOR COMBINED CONCRETE CONE & PULLOUT FAILURE AT VARIOUS EMBEDMENT DEPTHS

Using reinforcing bars in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +80°C.

					Δ	nchor Siz	e		
Property	Symbol	Unit	Ø8mm	Ø10m m	Ø12m m	Ø16m m	Ø20m m	Ø25m m	Ø32m m
Effective Embedment Depth = 8d	h _{ef}	mm	64	80	96	128	160	200	256
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	19.30	25.13	36.19	57.91	90.48	141.37	141.55
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80
Effective Embedment Depth = 10d	h _{ef}	mm	80	100	120	160	200	250	320
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	24.13	31.42	45.24	72.38	113.10	176.71	176.93
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80
Effective Embedment Depth = STD	h _{ef}	mm	80	90	110	128	170	210	300
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	24.13	28.27	41.47	57.91	96.13	148.44	165.88
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80
Effective Embedment Depth = 12d	h _{ef}	mm	96	120	144	192	240	300	384
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	28.95	37.70	54.29	86.86	135.72	212.06	212.32
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80
Effective Embedment Depth = 14d	h _{ef}	mm	112	140	168	224	280	350	448
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	33.78	43.98	63.33	101.34	158.34	247.40	247.71
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80
Effective Embedment Depth = 16d	h _{ef}	mm	128	160	192	256	320	400	512
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	38.60	50.27	72.38	115.81	180.96	282.74	283.10
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80
Effective Embedment Depth = 18d	h _{ef}	mm	144	180	216	288	360	450	576
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	43.43	56.55	81.43	130.29	203.58	318.09	318.48
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80
Effective Embedment Depth = 20d	h _{ef}	mm	160	200	240	320	400	500	640
Characteristic Load (Combined Concrete Cone & Pullout Failure)	N ⁰ _{Rk,p}	kN	48.25	62.83	90.48	144.76	226.19	353.43	353.87
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80

^{1.} Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

 $^{^{2.} \} Characteristic loads \ are \ valid \ for \ single \ anchors \ without \ close \ edge, \ anchor \ spacing \ or \ eccentric \ loading \ considerations.$

 $^{^{3.}}$ Tabulated values are valid for temperature range -40°C to +80°C (Max LTT = +50°C; Max STT = +80°C).

⁴⁻ Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

^{5.} Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

 $^{^{\}rm 6.}$ The compressive strength of the concrete (fck,cube) is assumed to be 25 N/mm2 for C20/25 concrete.

^{7.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

TENSION LOAD CALCULATIONS FOR COMBINED CONCRETE CONE & PULLOUT FAILURE AT 8D EMBEDMENT DEPTH

Using reinforcing bars in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +80°C.

Property	Symbol	Unit	Anchor Size							
. ,	•		Ø8mm	Ø10m	Ø12m	Ø16m	Ø20m	Ø25m	Ø32m	
Nominal Anchor Diameter	d	mm	8	10	12	16	20	25	32	
Characteristic Bond Strength	$ au_{ ext{Rk}}$	N/mm²	12.00	10.00	10.00	9.00	9.00	9.00	5.50	
Effective Embedment Depth	h _{ef}	mm	64	80	96	128	160	200	256	
Characteristic Load (Combined Concrete Cone and Pullout Failure)	N ⁰ _{Rk,p}	kN	19.30	25.13	36.19	57.91	90.48	141.37	141.55	
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80	
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	192	240	288	384	480	600	768	
Characteristic Edge Distance (Splitting Failure)	C _{cr,sp}	mm	96	120	144	192	240	300	384	
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	192	231	277	351	438	548	548	
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	C _{cr,Np}	mm	96	115	139	175	219	274	274	

Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.

^{3.} Tabulated values are valid for temperature range -40°C to +80°C (Max LTT = +50°C; Max STT = +80°C).

⁴⁻ Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

^{5.} Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

^{6.} The compressive strength of the concrete (fck,cube) is assumed to be 25 N/mm2 for C20/25 concrete.

^{7.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Combined concrete cone and pullout failure

				A	nchor Si	ze		
	$/ \setminus$	Ø8mm	Ø10m	Ø12m	Ø16m	Ø20m	Ø25m	Ø32m
	35	0.55						
	40	0.58	0.54					
	50	0.65	0.59	0.55				
	60	0.72	0.65	0.59				
	65	0.76	0.68	0.62	0.56			
	70	0.79	0.71	0.64	0.57			
	80	0.87	0.77	0.69	0.61	0.55		
(C	90	0.95	0.83	0.74	0.65	0.58		
Close Edge Distance, C (mm)	96	N/R	0.87	0.77	0.67	0.60		
Ö	100		0.90	0.79	0.68	0.61	0.55	
ce,	115		N/R	0.87	0.74	0.65	0.59	
tar	120			0.90	0.76	0.67	0.60	
Dis	130			0.95	0.80	0.70	0.62	0.62
ge	139			N/R	0.84	0.73	0.64	0.64
Ed	140				0.85	0.73	0.64	0.64
ose	150				0.89	0.76	0.67	0.67
Ö	160				0.93	0.80	0.69	0.69
	170				0.98	0.83	0.72	0.72
	175				N/R	0.85	0.73	0.73
	180					0.86	0.74	0.74
	190					0.90	0.77	0.77
	200					0.93	0.80	0.79
	219					N/R	0.85	0.85
	240						0.90	0.90
	260						0.96	0.96
	270						0.99	0.99
	274						N/R	N/R

- 1. Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TRO29. All other failure modes must be considered and different reduction factors may apply.
- Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.
- 3. Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- 4. Interpolation is allowed.
- 5. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.
- Close edge distances must exceed or be equal to the minimum close edge distance (Cmin) as defined in the ETA.

Reduction factors for anchor spacing:

CITIO	ombined concrete cone and pullout failure											
	\bigvee		Anchor Size									
	$/ \setminus$	Ø8mm	Ø10m	Ø12m	Ø16m	Ø20m	Ø25m	Ø32m				
	35	U.b4										
	40	0.65	0.65									
	50	0.67	0.66	0.64								
	60	0.70	0.68	0.65								
	65	0.71	0.69	0.66	0.63							
	70	0.72	0.70	0.67	0.64							
	80	0.74	0.72	0.69	0.65	0.61						
_	90	0.77	0.74	0.70	0.67	0.62						
п	100	0.79	0.76	0.72	0.68	0.64	0.59					
S (r	120	0.84	0.80	0.75	0.70	0.66	0.61					
e,	130	0.86	0.82	0.77	0.72	0.67	0.62	0.68				
anc	140	0.88	0.83	0.78	0.73	0.68	0.63	0.68				
Oist	160	0.93	0.87	0.81	0.76	0.70	0.65	0.70				
] g(180	0.97	0.91	0.85	0.78	0.72	0.67	0.71				
Anchor Spacing Distance, S (mm)	192	N/R	0.93	0.87	0.80	0.74	0.68	0.72				
Sp	200		0.94	0.88	0.81	0.74	0.68	0.73				
آور	220		0.98	0.91	0.83	0.77	0.70	0.75				
nct	231		N/R	0.93	0.85	0.78	0.71	0.76				
⋖	240			0.94	0.86	0.79	0.72	0.76				
	260			0.97	0.89	0.81	0.74	0.78				
	277			N/R	0.91	0.83	0.75	0.79				
	280				0.91	0.83	0.76	0.79				
	300				0.94	0.85	0.77	0.81				
	351				N/R	0.91	0.82	0.85				
	400					0.96	0.87	0.89				
	438					N/R	0.90	0.92				
	450						0.91	0.93				
	500						0.96	0.96				
	548						N/R	N/R				

- 1. Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TRO29. All other failure modes must be considered and different reduction factors may apply.
- 2. Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and "S_{Cr,Np}" but without close edge considerations.
- 3. Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- 4. Interpolation is allowed.
- 5. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.
- 6 Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the ETA.

TENSION LOAD CALCULATIONS FOR COMBINED CONCRETE CONE & PULLOUT FAILURE AT STD EMBEDMENT DEPTH

Using reinforcing bars in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +80°C.

Property	Symbol	Unit	Anchor Size						
Troperty	Symbol	Onit	Ø8mm	Ø10m	Ø12m	Ø16m	Ø20m Ø25m Ø32r 20 25 32 9.00 9.00 5.50 170 210 300 96.13 148.44 165.8 1.80 1.80 1.80 510 630 900 255 315 450 438 548 548	Ø32m	
Nominal Anchor Diameter	d	mm	8	10	12	16	20	25	32
Characteristic Bond Strength	TRK	N/mm²	12.00	10.00	10.00	9.00	9.00	9.00	5.50
Effective Embedment Depth	h _{ef}	mm	80	90	110	128	170	210	300
Characteristic Load (Combined Concrete Cone and Pullout Failure)	N ⁰ _{Rk,p}	kN	24.13	28.27	41.47	57.91	96.13	148.44	165.88
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	240	270	330	384	510	630	900
Characteristic Edge Distance (Splitting Failure)	C _{cr,sp}	mm	120	135	165	192	255	315	450
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	202	231	277	351	438	548	548
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	$C_{cr,Np}$	mm	101	115	139	175	219	274	274

Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

² Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.

 $^{^{3.}}$ Tabulated values are valid for temperature range -40°C to +80°C (Max LTT = +50°C; Max STT = +80°C).

⁴⁻ Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

^{5.} Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

^{6.} The compressive strength of the concrete (fck,cube) is assumed to be 25 N/mm2 for C20/25 concrete.

^{7.} Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Combined concrete cone and pullout failure

	/			·	nchor Siz			
		Ø8mm	Ø10m	Ø12m	Ø16m	Ø20m	Ø25m	Ø32m
	40	0.57						
	45	0.60	0.57					
	50	0.63	0.59					
	55	0.67	0.62	0.57				
	60	0.70	0.65	0.59				
	65	0.73	0.68	0.62	0.56			
	70	0.77	0.71	0.64	0.57			
	80	0.84	0.77	0.69	0.61			
(C	85	0.88	0.80	0.71	0.63	0.57		
Close Edge Distance, C (mm)	90	0.91	0.83	0.74	0.65	0.58		
Ö	101	N/R	0.90	0.79	0.69	0.61		
ice,	105		0.93	0.82	0.70	0.62	0.56	
tar	110		0.96	0.84	0.72	0.64	0.58	
Dis	115		N/R	0.87	0.74	0.65	0.59	
ge	120			0.90	0.76	0.67	0.60	
Ed	130			0.95	0.80	0.70	0.62	
ose	139			N/R	0.84	0.73	0.64	
D	140				0.85	0.73	0.64	
	150				0.89	0.76	0.67	0.67
	160				0.93	0.80	0.69	0.69
	170				0.98	0.83	0.72	0.72
	175				N/R	0.85	0.73	0.73
	180					0.86	0.74	0.74
	190					0.90	0.77	0.77
	200					0.93	0.80	0.79
	220					N/R	0.85	0.85
	240						0.90	0.90
	260						0.96	0.96
	274						N/R	N/R

- 1. Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TR029. All other failure modes must be considered and different reduction factors may apply.
- Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.
- 3. Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- 4. Interpolation is allowed.
- 5. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.
- 6 . Close edge distances must exceed or be equal to the minimum close edge distance (C_{min}) as defined in the ETA.

Reduction factors for anchor spacing:

Combined concrete cone and pullout failure											
	\backslash	Anchor Size									
	/	Ø8mm	Ø10m	Ø12m	Ø16m	Ø20m	Ø25m	Ø32m			
	40	0.66									
	45	0.67	0.66								
	50	0.68	0.67								
	55	0.69	0.68	0.65							
	60	0.70	0.69	0.66							
	65	0.71	0.70	0.67	0.63						
=	70	0.72	0.71	0.68	0.64						
Anchor Spacing Distance, S (mm)	80	0.75	0.73	0.69	0.65						
S (r	85	0.76	0.74	0.70	0.66	0.62					
ce,	90	0.77	0.75	0.71	0.67	0.63					
tan	100	0.79	0.76	0.72	0.68	0.64					
Dist	105	0.80	0.77	0.73	0.69	0.65	0.60				
-Br	125	0.84	0.81	0.76	0.71	0.67	0.62				
acii	150	0.89	0.86	0.80	0.74	0.69	0.64	0.70			
Sp	175	0.94	0.90	0.84	0.78	0.72	0.66	0.72			
hor	202	N/R	0.95	0.89	0.81	0.75	0.69	0.74			
ıncl	225		0.99	0.92	0.84	0.77	0.71	0.76			
٩	231		N/R	0.93	0.85	0.78	0.72	0.76			
	250			0.96	0.87	0.80	0.73	0.78			
	277			N/R	0.91	0.83	0.76	0.80			
	300				0.94	0.85	0.78	0.81			
	351				N/R	0.91	0.82	0.85			
	400					0.96	0.87	0.89			
	438					N/R	0.90	0.92			
	450						0.91	0.93			
	500						0.96	0.96			
	548						N/R	N/R			

- 1. Tabulated values are only applicable for instances where combined concrete cone and pullout failure is the controlling failure mode as described by TRO29. All other failure modes must be considered and different reduction factors may apply.
- ^{2.} Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and " $S_{cr,Np}$ " but without close edge considerations.
- Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- 4. Interpolation is allowed.
- 5. Tabulated values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.
- 6 . Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as defined in the ETA.

TENSION LOAD CALCULATIONS FOR COMBINED CONCRETE CONE & PULLOUT FAILURE AT 20D EMBEDMENT DEPTH

Using reinforcing bars in dry / wet, uncracked, C20/25 concrete. Temperature range -40°C to +80°C.

Property	Symbol	Unit	Anchor Size						
			Ø8mm	Ø10m	Ø12m	m Ø16m Ø20m Ø25m Ø32m 16 20 25 32 00 9.00 9.00 9.00 5.50 0 320 400 500 640 18 144.76 226.19 353.43 353.87 0 1.80 1.80 1.80 1.80 0 960 1200 1500 1920 0 480 600 750 960	Ø32m		
Nominal Anchor Diameter	d	mm	8	10	12	16	20	25	32
Characteristic Bond Strength	$ au_{ ext{Rk}}$	N/mm²	12.00	10.00	10.00	9.00	9.00	9.00	5.50
Effective Embedment Depth	h _{ef}	mm	160	200	240	320	400	500	640
Characteristic Load (Combined Concrete Cone and Pullout Failure)	N ⁰ _{Rk,p}	kN	48.25	62.83	90.48	144.76	226.19	353.43	353.87
Partial Safety Factor	γмс	-	1.80	1.80	1.80	1.80	1.80	1.80	1.80
Characteristic Anchor Spacing (Splitting Failure)	S _{cr,sp}	mm	480	600	720	960	1200	1500	1920
Characteristic Edge Distance (Splitting Failure)	C _{cr,sp}	mm	240	300	360	480	600	750	960
Characteristic Anchor Spacing (Combined Concrete Cone and Pullout Failure)	S _{cr,Np}	mm	202	231	277	351	438	548	548
Characteristic Edge Distance (Combined Concrete Cone and Pullout Failure)	C _{cr,Np}	mm	101	115	139	175	219	274	274

Characteristic loads are valid for combined concrete cone and pullout failure as defined by TR029 only. All other failure modes, including steel failure, detailed in TR029 as well as including combined effects of tension and shear, must be considered in accordance with TR029.

^{2.} Characteristic loads are valid for single anchors without close edge, anchor spacing or eccentric loading considerations.

^{3.} Tabulated values are valid for temperature range -40°C to +80°C (Max LTT = +50°C; Max STT = +80°C).

⁴ Tabulated values are only valid for the installation conditions stated. Other conditions, such as different temperature ranges, may affect the performance of the product.

^{5.} Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, eg: diurnal cycling.

 $^{^{6.}}$ The compressive strength of the concrete (fck,cube) is assumed to be 25 N/mm2 for C20/25 concrete.

 $^{^{7.}\} Tabulated\ values\ assume\ that\ the\ geometry\ of\ the\ anchor(s)\ and\ concrete\ member\ is\ sufficient\ to\ avoid\ splitting\ failure.$

Combined concrete cone and pullout failure

	\searrow			Α	nchor Si	ze		
	$/\setminus$	Ø8mm	Ø10m	Ø12m	Ø16m	Ø20m	Ø25m	Ø32m
	80	0.84						
	90	0.91						
	100	0.99	0.90					
	101	1.00	0.90					
	110		0.96					
	115		N/R					
_	120			0.90				
Close Edge Distance, C (mm)	130			0.95				
L)	139			N/R				
, (e	140							
anc	150							
ist	160				0.93			
e D	170				0.98			
Edg	175				N/R			
Se	180							
S S	190							
_	200					0.93		
	219					N/R		
	220							
	240							
	250						0.93	
	260						0.96	
	274						N/R	
	280							
	300							
	320							N/R

- 1. Tabulated values are only applicable for instances where combined concrete cone and $pullout\,failure\,is\,the\,controlling\,failure\,mode\,as\,described\,by\,TR029.\,\,All\,other\,failure\,modes$ $must\ be\ considered\ and\ different\ reduction\ factors\ may\ apply.$
- $^{\rm 2.}$ Tabulated values are based on a single anchor with a single close edge. Tabulated values must not be used if multiple close edges exist.
- 3. Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- 4. Interpolation is allowed.
- 5. Tabulated values assume that the geometry of the anchor(s) and concrete member is $sufficient\ to\ avoid\ splitting\ failure.$
- $^{6.}$ Close edge distances must exceed or be equal to the minimum close edge distance (C_{min}) as defined in the ETA.

Reduction factors for anchor spacing:

Combined concrete cone and pullout failure

	\searrow	Anchor Size									
	$/ \setminus$	Ø8mm	Ø10m	Ø12m	Ø16m	Ø20m	Ø25m	Ø32m			
	80	0.77									
	90	0.79									
	100	0.81	0.79								
	120	0.85	0.82	0.78							
_	140	0.89	0.86	0.81							
Anchor Spacing Distance, S (mm)	160	0.92	0.89	0.84	0.79						
S (r	180	0.96	0.92	0.87	0.81						
, Se	200	0.99	0.95	0.90	0.84	0.78					
an	202	N/R	0.96	0.90	0.84	0.79					
Oist	225		0.99	0.93	0.86	0.81					
] g(231		N/R	0.94	0.87	0.81					
acii	250			0.96	0.89	0.83	0.78				
Sp	277			N/R	0.92	0.86	0.80				
امر	300				0.95	0.88	0.82				
luc ₁	320				0.97	0.90	0.83	0.85			
⋖	325				0.97	0.90	0.83	0.85			
	351				N/R	0.92	0.85	0.87			
	375					0.94	0.87	0.89			
	400					0.97	0.89	0.90			
	438					N/R	0.92	0.93			
	450						0.93	0.94			
	500						0.97	0.97			
	548						N/R	N/R			

- 1. Tabulated values are only applicable for instances where combined concrete cone and $pullout\ failure\ is\ the\ controlling\ failure\ mode\ as\ described\ by\ TR029.\ All\ other\ failure\ modes$ must be considered and different reduction factors may apply.
- $^{\rm 2.}$ Tabulated values are based on a group of 2 anchors with the geometry defined by "S" and " $S_{cr,Np}$ " but without close edge considerations.
- 3. Anchors with geometry different to that defined in the above table must be considered separately and the tabulated values must not be used.
- 4. Interpolation is allowed.
- $^{\it 5.}$ Tabulated values assume that the geometry of the anchor(s) and concrete member is $sufficient\ to\ avoid\ splitting\ failure.$
- $^{6.}$ Anchor spacing distances must exceed or be equal to the minimum anchor spacing (S_{min}) as

Technical Documentation Sika AnchorFix-2+ 11, 2025, 01

USING SIKA ANCHORFIX®-2+ WITH POST-INSTALLED REBAR CONNECTIONS

Installation parameters

Re	ebar	Drill Hole	Cleaning	Min. Anchorage	Min. Lap/Splice	Max. Embedment
Diameter (mm)	f _{y,k} (N/mm2)	(mm)	Brush* (mm)	Length (mm)	Length (mm)	Depth (mm)
8	500	12 (10)	14	114	200	400
10	500	14 (12)	14	142	200	500
12	500	16	19	171	200	600
14	500	18	22	199	210	700
16	500	20	22	227	240	800
20	500	25	29	284	300	1000
25	500	32	40	355	375	1000
28	500	35	40	595	630	1000
32	500	40	42	681	720	1000

 $^{{\}it *Values in parenthesis represent alternative drilling diameters.}$

DESIGN BOND STRENGTH VALUES

Design values of the ultimate bond resistance fbd in N/mm² for rotary hammer drilling and compressed air drilling for good bond conditions.

Rebar Ø					Concrete Class					
(mm)	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
8										
10										
12				2.7	3.0	3.4	3.7	4.0	4.3	
14										
16	1.6	2.0	2.3	2.7						
20								3.7		
25						3.0				
28					2.7					
32						2	1.3			

 $Tabulated \ values for f_{bd} \ are \ valid for good \ bond \ conditions \ according \ to \ EN \ 1992-1-1. \ For \ all \ other \ bond \ conditions \ multiply \ the \ values for f_{bd} \ by \ 0.7.$

IMPORTANT NOTES

Use in Porous Substrates

This bonded anchor is not intended for use as a cosmetic or decorative product. When anchoring into porous or reconstituted stone it is recommended that technical assistance is sought. Due to the nature of the product, migration of the monomer in the resin may cause staining in certain materials. If you are still uncertain, it is advisable to test the resin by applying it in a small, discrete area and testing before using the resin on the project.

Important Note

Whilst all reasonable care is taken in compiling technical data on the Company's products, all recommendations or suggestions regarding the use of such products are made without guarantee, since the conditions of use are beyond the control of the Company. It is the customer's responsibility to satisfy themself that each product is fit for the purpose for which they intend to use it, that the actual conditions of use are suitable and that, in the light of our continual research and development programme, the information relating to each product has not been superseded.

