Information about the pre-treatment of surfaces in this document serves as a guideline only and must be verified by tests on original substrates. Project specific pre-treatment recommendations, based on laboratory tests, are available from Sika on request.

Sika® Aktivator-205
- **Color**: Colorless, clear
- **Type of product**: Adhesion promoter
- **Application temperature**: General range is 10 – 35°C (50 – 95°F).
 - For specific values refer always to the most recent Product Data Sheet.
- **Application**: Wipe with a clean and lint-free paper towel
- **Consumption**: Approximately 40 ml/m²
- **Flash-off time**: The range varies from 3 to 30 minutes depending on product and climatic conditions.
 - For specific values refer always to the most recent Product Data Sheet.
- **Color of container cap**: Yellow

Sika® Aktivator-100
- **Color**: Colorless to slight yellow
- **Type of product**: Adhesion promoter
- **Application temperature**: General range is 10 – 35°C (50 – 95°F).
 - For specific values refer always to the most recent Product Data Sheet.
- **Application**: Wipe with a clean and lint-free paper towel
- **Consumption**: Approximately 40 ml/m²
- **Flash-off time**: The range varies from 3 to 30 minutes depending on product and climatic conditions.
 - For specific values refer always to the most recent Product Data Sheet.
- **Color of container cap**: Orange

Sika® Primer-204 N
- **Color**: Opaque yellow
- **Type of product**: Primer
- **Application temperature**: General range is 10 – 35°C (50 – 95°F).
 - For specific values refer always to the most recent Product Data Sheet.
- **Prearrangement**: Shake can very thoroughly until mixing ball rattles freely.
 - Continue shaking for another minute.
- **Application**: Brush/felt/foam applicator
- **Consumption**: The consumption is in the range of 100 to 150 ml/m². Porous substrates need approx. 200 ml/m².
 - For specific values refer always to the most recent Product Data Sheet.
- **Flash-off time**: The range varies from 10 to 60 minutes depending on product and climatic conditions.
 - For specific values refer always to the most recent Product Data Sheet.
- **Color of container cap**: Light blue

Sika® Primer-207
- **Color**: Black
- **Type of product**: Primer
- **Application temperature**: General range is 10 – 35°C (50 – 95°F).
 - For specific values refer always to the most recent Product Data Sheet.
- **Prearrangement**: Shake can very thoroughly until mixing ball rattles freely.
- **Application**: Brush/felt/foam applicator
- **Consumption**: The consumption is in the range of 100 to 150 ml/m². Porous substrates need approx. 200 ml/m².
 - For specific values refer always to the most recent Product Data Sheet.
- **Flash-off time**: The range varies from 10 to 60 minutes depending on product and climatic conditions.
 - For specific values refer always to the most recent Product Data Sheet.
- **Color of container cap**: Black

Sika® Primer-210
- **Color**: Transparent, yellowish
- **Type of product**: Primer
- **Application temperature**: General range is 10 – 35°C (50 – 95°F).
 - For specific values refer always to the most recent Product Data Sheet.
- **Prearrangement**: Shake can very thoroughly until mixing ball rattles freely.
- **Application**: Brush/felt/foam applicator
- **Consumption**: The consumption is in the range of 100 to 150 ml/m². Porous substrates need approx. 200 ml/m².
 - For specific values refer always to the most recent Product Data Sheet.
- **Flash-off time**: The range varies from 10 to 60 minutes depending on product and climatic conditions.
 - For specific values refer always to the most recent Product Data Sheet.
- **Color of container cap**: Gray

Sika® Primer-215
- **Color**: Transparent, yellowish
- **Type of product**: Primer
- **Application temperature**: General range is 10 – 35°C (50 – 95°F).
 - For specific values refer always to the most recent Product Data Sheet.
- **Prearrangement**: Shake can very thoroughly until mixing ball rattles freely.
- **Application**: Brush/felt/foam applicator
- **Consumption**: The consumption is in the range of 100 to 150 ml/m². Porous substrates need approx. 200 ml/m².
 - For specific values refer always to the most recent Product Data Sheet.
- **Flash-off time**: The range varies from 10 to 60 minutes depending on product and climatic conditions.
 - For specific values refer always to the most recent Product Data Sheet.
- **Color of container cap**: Dark blue

LEGAL DISCLAIMER

The information contained herein and any other advice are given in good faith based on Sika’s current knowledge and experience of the products when properly stored, handled and applied under normal conditions in accordance with Sika’s recommendations. The information only applies to the application(s) and product(s) expressly referred to herein and is based on laboratory tests which do not replace practical tests. In case of changes in the parameters of the application, such as changes in substrates, etc., or in case of a different application, consult Sika’s Technical Service prior to using Sika products. The information contained herein does not relieve the user of the products from testing them for the intended application and purpose. All orders are accepted subject to our current terms of sale and delivery. Users must always refer to the most recent issue of the local Product Data Sheet for the product concerned, copies of which can be downloaded on your local Sika company website or will be supplied on request.
Therefore it is recommended to contact Sika to interact with the sealant or adhesive. Metals like brass, copper and bronze are prone to abrasive in case of electrogalvanized steel. has to be degreased prior to use. Do not use abrasives in case of electrogalvanized steel. This oxide layer has to be removed with very fine abrasive pads. In the case of aluminum that has been surface treated (chromated, anodized or coated), a simple pre-treatment is usually sufficient.

2. Anodized aluminum
Aluminum is a reactive material which oxidizes on exposure to air. Anodization is an electrochemical or chemical process to protect aluminum from corrosion by forming a tough surface layer. Due to the wide variety of treatments such as coloring, sealing as well as the application of translucent lacquers of varying chemical composition, it is required to run preliminary tests to check for satisfactory adhesion.

3. Steel
Depending on the exposure conditions, steel is subject to corrosion. Sika primers, which are applied to the surface in a very thin layer, do not provide corrosion protection as such.

4. Stainless steel
The terms “stainless steel” and “special steel” embrace a whole group of products of varying chemical composition with varying surface finishes. These have an important influence on the adhesion behavior. The surface may contain single type chromium oxide. By removing it with a very fine abrasive pad the adhesion can be improved.

5. Hot dipped, galvanized steel
The principal techniques for applying zinc coatings to steel are a) the Sendzimir process, b) electrogalvanizing, c) hot dip or continuous strip galvanizing. In the case of a) and b) the substrate is prepared to a controlled specification and the composition of the surface layer is more or less uniform throughout. The surface composition of hot dipped components is not uniform. It is therefore necessary to carry out periodic adhesion checks. Oiled zinc coated steel has to be degreased prior to use. Do not use abrasives in case of electrogalvanized steel.

6. Non ferrous metals
Metals like brass, copper and bronze are prone to interact with the sealant or adhesive. Therefore it is recommended to contact Sika for advice prior to the use.

7. FRP (fibre reinforced plastic)
These materials consist for the most part of thermosetting plastics derived from unsaturated polyesters, less commonly from epoxy resins or polyurethanes. Newly manufactured components based on unsaturated polyesters contain quantities of styrene in monomeric form, recognized by its distinctive odor. These components have not yet attained full cure, and as such are subject to further shrinkage following their removal from the mould. For this reason only aged or tempered FRP mouldings should be selected for adhesive bonding. The smooth side (gel coat side) may be contaminated with mould release agent, which will adversely affect adhesion. The rough reverse side, which is exposed to the air during manufacture, usually contains paraffin, added to assist air drying. Here it is necessary to abrade the surface thoroughly prior to additional surface preparation. Thin section FRP mouldings made from transparent or pale colored material are translucent. In such cases a suitable UV barrier must be incorporated (see also point 10. Transparent or translucent substrates). Preliminary tests must be carried out to determine the most appropriate method of surface preparation.

8. Plastics
Some plastics require special physico-chemical treatment before they can be successfully bonded (flame treatment or plasma etching in combination with chemical pre-treatment). Polypropylene and polyethylene are two examples. With many plastic blends (e.g. engineering plastic) it is impossible to give specific guidance due to the potential variety of components and internal/external release agents they contain. Thermoplastics are subject to a risk of stress cracking. Thermally formed components must be destressed prior to adhesive bonding process. For transparent or translucent plastics see point 10.

9. PMMA/PC
For PMMA and PC substrates we recommend Sikaflex®-222 UV in combination with a UV-Shielding tape (see also points 8 and 10). In case of scratch-resistant coating on PMMA or PC, remove this layer in the bonding area with sand paper (120 grit) and pretreat as defined for non coated substrates. Note that this this last step may impair the mechanical properties of the PMMA/PC. Contact Sika for solutions without removal of the coating.

10. Transparent or translucent substrates
In the case of transparent or translucent substrates where the bond face is exposed to direct sunlight through the transparent or translucent layer, some form of UV barrier must be incorporated to shield the adhesive bond. This may consist of an opaque cover strip, an optically dense screen printed border or a black primer for semi transparent substrates such as translucent FRP or screen prints. Due to the high UV exposure on external application a black primer as a sole UV protection is not suitable. For inhouse applications and where the bondline is occasionally exposed to UV, a sole black primer for UV protection might be suitable.

11. Surface coatings, paint finishes
Preliminary trials are necessary before attempting to bond substrates with an applied surface coating. As a general rule, reactive systems that cure thermally (cataphoretic immersion coatings, powder coatings) or by addition of polymerisation (epoxy or polyurethane paints) can usually be successfully bonded with Sikaflex® and SikaTack® products. Alkyd resin paints that dry by oxidation are not suitable for bonding. Paint systems that rely on a physical cure mechanism – typically coatings based on polyvinyl butyral or epoxy resin esters – are generally compatible with sealants only, i.e. not with adhesives. Caution: The presence of paint additives designed to modify film formation, such as conditioners, silicones, matting agents, etc., may adversely affect adhesion to the paint surface. Consider that certain coatings can be negatively influenced by weathering, for example if exposed during transport prior to the bonding and sealing process. Surface coatings must be monitored for consistency of quality and uniformity of composition through a quality assurance system.

12. Phenolic film faced plywood
These are waterproof plywood panels with a yellow or brown film facing. The surface preparation is the same as for paints and coatings. Due to the variety of coatings the required adhesion may not always be achieved. In such case grind the surface down to the wood and pretreat it as such.

Overpaintability
Sikaflex® products can be overpainted with most conventional paint systems. The best results are obtained if the sealant is allowed to cure fully first. If early overpainting is required, trials must be carried out to check compatibility with the paint system. Please note that non-flexible paint systems will impede joint movement, which can lead to cracking of the paint. PVC-based paints and paints that dry by oxidation (oil or alkyd resin based) are generally not suitable for application over Sikaflex® products.