According to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

SikaBiresin® GC070 (A)

Date of last issue: 06.01.2023 Version 5.0 Print Date 26.06.2023

Revision Date: 26.06.2023

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1 Product identifier

Trade name : SikaBiresin® GC070 (A)

1.2 Relevant identified uses of the substance or mixture and uses advised against

Product use : Tooling system

1.3 Details of the supplier of the safety data sheet

Company name of supplier : Sika Limited

Watchmead Welwyn Garden City

Hertfordshire. AL7 1BQ +44 (0)1707 394444

Telephone : +44 (0)1707 394444
Telefax : +44 (0)1707 329129
E-mail address of person : EHS@uk.sika.com

responsible for the SDS

1.4 Emergency telephone number

National Chemical Emergency Centre (NCEC)

24 Hour Emergency Telephone Number +44 870 190 6777

SECTION 2: Hazards identification

2.1 Classification of the substance or mixture

Classification (REGULATION (EC) No 1272/2008)

Skin irritation, Category 2 H315: Causes skin irritation.

Eye irritation, Category 2 H319: Causes serious eye irritation.

Skin sensitisation, Category 1 H317: May cause an allergic skin reaction.

Long-term (chronic) aquatic hazard, Cat-H411: Toxic to aquatic life with long lasting effects.

egory 2

2.2 Label elements

Labelling (REGULATION (EC) No 1272/2008)

Hazard pictograms :

Signal word : Warning

Hazard statements : H315 Causes skin irritation.

H317 May cause an allergic skin reaction.

H319 Causes serious eye irritation.

H411 Toxic to aquatic life with long lasting effects.

According to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

SikaBiresin® GC070 (A)

Date of last issue: 06.01.2023 Version 5.0 Print Date 26.06.2023

Revision Date: 26.06.2023

Precautionary statements : Prevention:

P261 Avoid breathing mist or vapours.
P264 Wash skin thoroughly after handling.
P273 Avoid release to the environment.

P280 Wear protective gloves/ eye protection/ face

protection.

Response:

P333 + P313 If skin irritation or rash occurs: Get medical

advice/ attention.

P391 Collect spillage.

Hazardous components which must be listed on the label:

bis-[4-(2,3-epoxypropoxy)phenyl]methane bis-[4-(2,3-epoxipropoxi)phenyl]propane oxirane, mono[(C12-14-alkyloxy)methyl] derivs. Fatty acids, C14-18 and C16-18-unsatd., maleated maleic anhydride

2.3 Other hazards

This substance/mixture contains no components considered to be either persistent, bioaccumulative and toxic (PBT), or very persistent and very bioaccumulative (vPvB) at levels of 0.1% or higher.

Ecological information: The substance/mixture does not contain components considered to have endocrine disrupting properties according to REACH Article 57(f) or Commission Delegated regulation (EU) 2017/2100 or Commission Regulation (EU) 2018/605 at levels of 0.1% or higher.

Toxicological information: The substance/mixture does not contain components considered to have endocrine disrupting properties according to REACH Article 57(f) or Commission Delegated regulation (EU) 2017/2100 or Commission Regulation (EU) 2018/605 at levels of 0.1% or higher.

SECTION 3: Composition/information on ingredients

3.2 Mixtures

Components

Components			
Chemical name	CAS-No.	Classification	Concentration
	EC-No.		(% w/w)
	Registration number		
bis-[4-(2,3-	Not Assigned	Skin Irrit. 2; H315	>= 25 - < 40
epoxypropoxy)phenyl]methane	701-263-0	Skin Sens. 1; H317	
	01-2119454392-40-	Aquatic Chronic 2;	
	XXXX	H411	

According to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

SikaBiresin® GC070 (A)

bis-[4-(2,3- epoxipropoxi)phenyl]propane	1675-54-3 216-823-5 01-2119456619-26- XXXX	Skin Irrit. 2; H315 Eye Irrit. 2; H319 Skin Sens. 1; H317 Aquatic Chronic 2; H411	>= 10 - < 20
		specific concentration limit Eye Irrit. 2; H319 >= 5 % Skin Irrit. 2; H315 >= 5 %	
oxirane, mono[(C12-14- alkyloxy)methyl] derivs.	68609-97-2 271-846-8 01-2119485289-22- XXXX	Skin Irrit. 2; H315 Skin Sens. 1; H317	>= 0,1 - < 0,5
Fatty acids, C14-18 and C16-18- unsatd., maleated	85711-46-2 701-043-4 288-306-2 01-2119976378-19- XXXX	Skin Irrit. 2; H315 Skin Sens. 1; H317	>= 0,1 - < 0,5
maleic anhydride	108-31-6 203-571-6 01-2119472428-31- XXXX	Acute Tox. 4; H302 Skin Corr. 1B; H314 Eye Dam. 1; H318 Resp. Sens. 1; H334 Skin Sens. 1A; H317 STOT RE 1; H372 (Inhalation, Respiratory system) EUH071 specific concentration limit Skin Sens. 1A; H317	>= 0,001 - < 0,1

For explanation of abbreviations see section 16.

SECTION 4: First aid measures

4.1 Description of first aid measures

General advice : Move out of dangerous area.

Consult a physician.

Show this safety data sheet to the doctor in attendance.

>= 0,001 %

If inhaled : Move to fresh air.

Consult a physician after significant exposure.

According to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

SikaBiresin® GC070 (A)

Date of last issue: 06.01.2023 Version 5.0 Print Date 26.06.2023

Revision Date: 26.06.2023

In case of skin contact Take off contaminated clothing and shoes immediately.

> Wash off with soap and plenty of water. If symptoms persist, call a physician.

In case of eye contact Immediately flush eye(s) with plenty of water.

Remove contact lenses.

Keep eye wide open while rinsing.

If eye irritation persists, consult a specialist.

If swallowed Do not induce vomiting without medical advice.

Rinse mouth with water.

Do not give milk or alcoholic beverages.

Never give anything by mouth to an unconscious person.

4.2 Most important symptoms and effects, both acute and delayed

Symptoms Allergic reactions

Excessive lachrymation

Erythema Dermatitis

See Section 11 for more detailed information on health effects

and symptoms.

Risks irritant effects

sensitising effects

Causes skin irritation.

May cause an allergic skin reaction. Causes serious eye irritation.

4.3 Indication of any immediate medical attention and special treatment needed

Treatment : Treat symptomatically.

SECTION 5: Firefighting measures

5.1 Extinguishing media

Suitable extinguishing media : In case of fire, use water/water spray/water jet/carbon diox-

ide/sand/foam/alcohol resistant foam/chemical powder for

extinction.

5.2 Special hazards arising from the substance or mixture

Specific hazards during fire-

fighting

Do not allow run-off from fire fighting to enter drains or water

courses.

ucts

Hazardous combustion prod- : No hazardous combustion products are known

According to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

SikaBiresin® GC070 (A)

Date of last issue: 06.01.2023 Version 5.0 Print Date 26.06.2023

Revision Date: 26.06.2023

5.3 Advice for firefighters

Further information

for firefighters

Special protective equipment : In the event of fire, wear self-contained breathing apparatus.

Collect contaminated fire extinguishing water separately. This

must not be discharged into drains.

Fire residues and contaminated fire extinguishing water must

be disposed of in accordance with local regulations.

SECTION 6: Accidental release measures

6.1 Personal precautions, protective equipment and emergency procedures

Personal precautions : Use personal protective equipment.

Deny access to unprotected persons.

6.2 Environmental precautions

Environmental precautions Do not flush into surface water or sanitary sewer system.

If the product contaminates rivers and lakes or drains inform

respective authorities.

6.3 Methods and material for containment and cleaning up

Soak up with inert absorbent material (e.g. sand, silica gel, Methods for cleaning up

acid binder, universal binder, sawdust).

Keep in suitable, closed containers for disposal.

6.4 Reference to other sections

For personal protection see section 8.

SECTION 7: Handling and storage

7.1 Precautions for safe handling

Advice on safe handling Avoid exceeding the given occupational exposure limits (see

section 8).

Do not get in eyes, on skin, or on clothing. For personal protection see section 8.

Persons with a history of skin sensitisation problems or asthma, allergies, chronic or recurrent respiratory disease should not be employed in any process in which this mixture is being

used.

Smoking, eating and drinking should be prohibited in the ap-

plication area.

Follow standard hygiene measures when handling chemical

products

Advice on protection against : Normal measures for preventive fire protection.

According to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

SikaBiresin® GC070 (A)

Date of last issue: 06.01.2023 Version 5.0 Print Date 26.06.2023

Revision Date: 26.06.2023

fire and explosion

Hygiene measures : Handle in accordance with good industrial hygiene and safety

practice. When using do not eat or drink. When using do not smoke. Wash hands before breaks and at the end of workday.

7.2 Conditions for safe storage, including any incompatibilities

Requirements for storage areas and containers

Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage. Store in accord-

ance with local regulations.

Further information on stor-

age stability

No decomposition if stored and applied as directed.

7.3 Specific end use(s)

Specific use(s) : Consult most current local Product Data Sheet prior to any

use.

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Occupational Exposure Limits

Components	CAS-No.	Value type (Form of exposure)	Control parame- ters *	Basis *
maleic anhydride	108-31-6	TWA	1 mg/m3	GB EH40
	Further information: Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even in tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance those who are likely to become hyper-responsive. Substances that can cause occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing airway hyper-responsiveness, but which do not include the disease themselves. The latter substances are not classified as asthmagens or respiratory sensitisers. Further information can be found in the HSE publication Asthmagen? Critical assessments of the evidence for agents implicated in occupational asthma., Wherever it is reasonably practicable, exposure to substances that can cause occupational asthma should be prevented. Where this is not possible, the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive. For substances that can cause occupational asthma,			upational
	COSHH requir	es that exposure be	reduced to as lov	w as is rea-

According to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

SikaBiresin® GC070 (A)

Date of last issue: 06.01.2023 Version 5.0 Print Date 26.06.2023

Revision Date: 26.06.2023

sonably practicable. Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance., Capable of causing occupational asthma., The 'Sen' notation in the list of WELs has been assigned only to those substances which may cause occupational asthma in the categories shown in Table 1. It should be remembered that other substances not in these tables may cause occupational asthma. HSE's asthma web pages (www.hse.gov.uk/asthma) provide further information. STEL 3 mg/m3 GB EH40

8.2 Exposure controls

Engineering measures

Maintain air concentrations below occupational exposure standards. Ensure adequate ventilation, especially in confined areas.

Personal protective equipment

Eye/face protection Safety glasses with side-shields conforming to EN166

Eve wash bottle with pure water

Hand protection Chemical-resistant, impervious gloves complying with an ap-

proved standard must be worn at all times when handling chemical products. Reference number EN 374. Follow manu-

facturer specifications.

Suitable for short time use or protection against splashes:

Butyl rubber/nitrile rubber gloves (> 0,1 mm) Contaminated gloves should be removed.

Suitable for permanent exposure:

Viton gloves (0.4 mm), breakthrough time >30 min.

Skin and body protection Protective clothing (e.g. Safety shoes acc. to EN ISO 20345,

> long-sleeved working clothing, long trousers). Rubber aprons and protective boots are additionally recommended for mixing

and stirring work.

Respiratory protection In case of inadequate ventilation wear respiratory protection.

Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe work-

ing limits of the selected respirator.

organic vapor filter (Type A)

A1: < 1000 ppm: A2: < 5000 ppm: A3: < 10000 ppm Ensure adequate ventilation. This can be achieved by local exhaust extraction or by general ventilation. (EN 689 - Methods for determining inhalation exposure). This applies in particular to the mixing / stirring area. In case this is not sufficent

^{*}The above mentioned values are in accordance with the legislation in effect at the date of the release of this safety data sheet.

According to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

SikaBiresin® GC070 (A)

Date of last issue: 06.01.2023 Version 5.0 Print Date 26.06.2023

Revision Date: 26.06.2023

to keep the concentrations under the occupational exposure limits then respiration protection measures must be used.

Environmental exposure controls

General advice : Do not flush into surface water or sanitary sewer system.

If the product contaminates rivers and lakes or drains inform

respective authorities.

SECTION 9: Physical and chemical properties

9.1 Information on basic physical and chemical properties

Physical state liquid Appearance viscous Colour blue

Odour characteristic, very faint

Melting point/range / Freezing : No data available

point

Boiling point/boiling range : > 200 °C

Flammability (solid, gas) No data available

Upper/lower flammability or explosive limits

Upper explosion limit / Up- : No data available

per flammability limit

Lower explosion limit / Lower flammability limit No data available

> 110 °C Flash point

Method: closed cup

No data available Auto-ignition temperature

Decomposition temperature No data available

6 - 9pН

Concentration: 100 %

Viscosity

Viscosity, kinematic No data available

Solubility(ies)

Water solubility insoluble

Partition coefficient: n-

octanol/water

No data available

According to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

SikaBiresin® GC070 (A)

Date of last issue: 06.01.2023 Version 5.0 Print Date 26.06.2023

Revision Date: 26.06.2023

Vapour pressure : 0,01 hPa

Density : 1,77 g/cm3 (20 °C)

Relative vapour density : No data available

Particle characteristics : No data available

9.2 Other information

No data available

SECTION 10: Stability and reactivity

10.1 Reactivity

No dangerous reaction known under conditions of normal use.

10.2 Chemical stability

The product is chemically stable.

10.3 Possibility of hazardous reactions

Hazardous reactions : Stable under recommended storage conditions.

10.4 Conditions to avoid

Conditions to avoid : No data available

10.5 Incompatible materials

Materials to avoid : No data available

10.6 Hazardous decomposition products

No decomposition if stored and applied as directed.

SECTION 11: Toxicological information

11.1 Information on hazard classes as defined in Regulation (EC) No 1272/2008

Acute toxicity

Not classified based on available information.

Components:

bis-[4-(2,3-epoxipropoxi)phenyl]propane:

Acute oral toxicity : LD50 Oral (Rat): > 5.000 mg/kg

Acute dermal toxicity : LD50 Dermal (Rabbit): > 5.000 mg/kg

According to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

SikaBiresin® GC070 (A)

Date of last issue: 06.01.2023 Version 5.0 Print Date 26.06.2023

Revision Date: 26.06.2023

oxirane, mono[(C12-14-alkyloxy)methyl] derivs.:

Acute oral toxicity : LD50 Oral (Rat): > 5.000 mg/kg

Fatty acids, C14-18 and C16-18-unsatd., maleated:

Acute oral toxicity : LD50 Oral (Rat): > 2.000 mg/kg

maleic anhydride:

Acute inhalation toxicity : Assessment: Corrosive to the respiratory tract.

Skin corrosion/irritation

Causes skin irritation.

Serious eye damage/eye irritation

Causes serious eye irritation.

Respiratory or skin sensitisation

Skin sensitisation

May cause an allergic skin reaction.

Respiratory sensitisation

Not classified based on available information.

Germ cell mutagenicity

Not classified based on available information.

Carcinogenicity

Not classified based on available information.

Reproductive toxicity

Not classified based on available information.

STOT - single exposure

Not classified based on available information.

STOT - repeated exposure

Not classified based on available information.

Aspiration toxicity

Not classified based on available information.

11.2 Information on other hazards

Endocrine disrupting properties

Product:

Assessment : The substance/mixture does not contain components consid-

ered to have endocrine disrupting properties according to REACH Article 57(f) or Commission Delegated regulation (EU) 2017/2100 or Commission Regulation (EU) 2018/605 at

levels of 0.1% or higher.

According to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

SikaBiresin® GC070 (A)

Date of last issue: 06.01.2023 Version 5.0 Print Date 26.06.2023

Revision Date: 26.06.2023

SECTION 12: Ecological information

12.1 Toxicity

Components:

bis-[4-(2,3-epoxipropoxi)phenyl]propane:

Toxicity to fish : LC50 (Oncorhynchus mykiss (rainbow trout)): 2 mg/l

Exposure time: 96 h

Toxicity to daphnia and other : EC50 (Daphnia magna (Water flea)): 1,8 mg/l

aquatic invertebrates

Exposure time: 48 h

Fatty acids, C14-18 and C16-18-unsatd., maleated:

Toxicity to daphnia and other : EC50 (Daphnia magna (Water flea)): > 100 mg/l

aquatic invertebrates

Exposure time: 48 h

Toxicity to algae/aquatic

plants

: ErC50 (Pseudokirchneriella subcapitata (green algae)): > 100

Exposure time: 72 h

12.2 Persistence and degradability

No data available

12.3 Bioaccumulative potential

No data available

12.4 Mobility in soil

No data available

12.5 Results of PBT and vPvB assessment

Product:

This substance/mixture contains no components considered Assessment

> to be either persistent, bioaccumulative and toxic (PBT), or very persistent and very bioaccumulative (vPvB) at levels of

0.1% or higher...

12.6 Endocrine disrupting properties

Product:

Assessment The substance/mixture does not contain components consid-

ered to have endocrine disrupting properties according to REACH Article 57(f) or Commission Delegated regulation (EU) 2017/2100 or Commission Regulation (EU) 2018/605 at

levels of 0.1% or higher.

According to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

SikaBiresin® GC070 (A)

Date of last issue: 06.01.2023 Version 5.0 Print Date 26.06.2023

Revision Date: 26.06.2023

12.7 Other adverse effects

Product:

Additional ecological infor-

mation

An environmental hazard cannot be excluded in the event of

unprofessional handling or disposal.

Toxic to aquatic life with long lasting effects.

SECTION 13: Disposal considerations

13.1 Waste treatment methods

Product : The generation of waste should be avoided or minimized

wherever possible.

Empty containers or liners may retain some product residues. This material and its container must be disposed of in a safe

way.

Dispose of surplus and non-recyclable products via a licensed

waste disposal contractor.

Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional

local authority requirements.

Avoid dispersal of spilled material and runoff and contact with

soil, waterways, drains and sewers.

European Waste Catalogue : 20 01 27* paint, inks, adhesives and resins containing dan-

gerous substances

Contaminated packaging : 15 01 10* packaging containing residues of or contaminated

by dangerous substances

SECTION 14: Transport information

14.1 UN number or ID number

ADR : UN 3082 IMDG : UN 3082 IATA : UN 3082

14.2 UN proper shipping name

ADR : ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID,

N.O.S.

(epoxy resin)

IMDG : ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID,

N.O.S.

(epoxy resin)

According to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

SikaBiresin® GC070 (A)

Date of last issue: 06.01.2023 Version 5.0 Print Date 26.06.2023

Revision Date: 26.06.2023

IATA : Environmentally hazardous substance, liquid, n.o.s.

(epoxy resin)

14.3 Transport hazard class(es)

Class Subsidiary risks

ADR : 9 **IMDG** : 9 **IATA** : 9

14.4 Packing group

ADR

Packing group : III
Classification Code : M6
Hazard Identification Number : 90
Labels : 9
Tunnel restriction code : (-)

IMDG

Packing group : III Labels : 9

EmS Code : F-A, S-F

IATA (Cargo)

Packing instruction (cargo : 964

aircraft)

Packing instruction (LQ) : Y964
Packing group : III

Labels : Miscellaneous

IATA (Passenger)

Packing instruction (passen- : 964

ger aircraft)

Packing instruction (LQ) : Y964
Packing group : III

Labels : Miscellaneous

14.5 Environmental hazards

ADR

Environmentally hazardous : yes

IMDG

Marine pollutant : yes

IATA (Passenger)

Environmentally hazardous : yes

IATA (Cargo)

Environmentally hazardous : yes

According to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

SikaBiresin® GC070 (A)

Date of last issue: 06.01.2023 Version 5.0 Print Date 26.06.2023

Revision Date: 26.06.2023

14.6 Special precautions for user

The transport classification(s) provided herein are for informational purposes only, and solely based upon the properties of the unpackaged material as it is described within this Safety Data Sheet. Transportation classifications may vary by mode of transportation, package sizes, and variations in regional or country regulations.

14.7 Maritime transport in bulk according to IMO instruments

Not applicable for product as supplied.

SECTION 15: Regulatory information

15.1 Safety, health and environmental regulations/legislation specific for the substance or mixtureRelevant EU provisions transposed through retained EU law

UK REACH List of restrictions (Annex 17) : Not applicable

UK REACH Candidate list of substances of very high

concern (SVHC) for Authorisation

Not applicable

Not applicable

The Persistent Organic Pollutants Regulations (retained

Regulation (EU) 2019/1021 as amended for Great Brit-

ain)

International Chemical Weapons Convention (CWC)

Schedules of Toxic Chemicals and Precursors

Not applicable

Regulation (EC) No 1005/2009 on substances that de-

plete the ozone layer

Not applicable

UK REACH List of substances subject to authorisation

(Annex XIV)

Not applicable

GB Export and import of hazardous chemicals - Prior

Informed Consent (PIC) Regulation

Not applicable

Control of Major Accident Hazards Regulations E2 ENVIRONMENTAL HAZARDS

2015 (COMAH)

Volatile organic compounds : Law on the incentive tax for volatile organic compounds

(VOCV)

Volatile organic compounds (VOC) content: 0,2% w/w

no VOC duties

Directive 2010/75/EU of 24 November 2010 on industrial emissions (integrated pollution prevention and control) Volatile organic compounds (VOC) content: 0,4% w/w

If other regulatory information applies that is not already provided elsewhere in the Safety Data Sheet, then it is described in this subsection.

According to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

SikaBiresin® GC070 (A)

Date of last issue: 06.01.2023 Version 5.0 Print Date 26.06.2023

Revision Date: 26.06.2023

Health, safety and environmental regulation/legislation specific for the substance or mixture:

: Environmental Protection Act 1990 & Subsidiary Regulations Health and Safety at Work Act 1974 & Subsidiary Regulations Control of Substances Hazardous to Health Regulations

(COSHH)

May be subject to the Control of Major Accident Hazards

Regulations (COMAH), and amendments.

Other regulations:

Take note of The Management of Health and Safety at Work Regulations 1999 (requirements relating to new and expectant mothers at work contained in Regulation 16 to 18) and of the Pregnant Workers Directive 92/85/EEC.

Take note of The Management of Health and Safety at Work Regulations 1999 (requirements relating to protection of young people at work contained in Regulation 19) and of Directive 94/33/EC on the protection of young people at work.

15.2 Chemical safety assessment

No Chemical Safety Assessment has been carried out for this mixture by the supplier.

SECTION 16: Other information

Full text of H-Statements

H302 Harmful if swallowed.

Causes severe skin burns and eye damage. H314

H315 Causes skin irritation.

H317 May cause an allergic skin reaction. H318 Causes serious eye damage. Causes serious eye irritation. H319

H334 May cause allergy or asthma symptoms or breathing difficul-

ties if inhaled.

Causes damage to organs through prolonged or repeated H372

exposure.

Toxic to aquatic life with long lasting effects. H411

Full text of other abbreviations

Acute Tox. Acute toxicity

Aquatic Chronic Long-term (chronic) aquatic hazard

Eye Dam. Serious eye damage

Eye Irrit. Eye irritation

Resp. Sens. Respiratory sensitisation

Skin Corr. Skin corrosion Skin Irrit. Skin irritation Skin Sens. Skin sensitisation

STOT RE Specific target organ toxicity - repeated exposure UK. EH40 WEL - Workplace Exposure Limits GB EH40

GB EH40 / TWA Long-term exposure limit (8-hour TWA reference period) GB EH40 / STEL Short-term exposure limit (15-minute reference period) ADR

European Agreement concerning the International Carriage of

Dangerous Goods by Road

According to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

SikaBiresin® GC070 (A)

Date of last issue: 06.01.2023 Version 5.0 Print Date 26.06.2023

Revision Date: 26.06.2023

CAS : Chemical Abstracts Service
DNEL : Derived no-effect level

EC50 : Half maximal effective concentration

GHS : Globally Harmonized System

IATA : International Air Transport Association

IMDG : International Maritime Code for Dangerous Goods

LD50 : Median lethal dosis (the amount of a material, given all at

once, which causes the death of 50% (one half) of a group of

test animals)

LC50 : Median lethal concentration (concentrations of the chemical in

air that kills 50% of the test animals during the observation

period)

MARPOL : International Convention for the Prevention of Pollution from

Ships, 1973 as modified by the Protocol of 1978

OEL : Occupational Exposure Limit

PBT : Persistent, bioaccumulative and toxic PNEC : Predicted no effect concentration

REACH : Regulation (EC) No 1907/2006 of the European Parliament

and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency

SVHC : Substances of Very High Concern

vPvB : Very persistent and very bioaccumulative

Further information

Classification of the mixture: Classification procedure:

Skin Irrit. 2	H315	Calculation method
Eye Irrit. 2	H319	Calculation method
Skin Sens. 1	H317	Calculation method
Aquatic Chronic 2	H411	Calculation method

The information contained in this Safety Data Sheet corresponds to our level of knowledge at the time of publication. All warranties are excluded. Our most current General Sales Conditions shall apply. Please consult the product data sheet prior to any use and processing.

Changes as compared to previous version!

GB / EN